BrentSolver.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.solvers;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Precision;
- /**
- * This class implements the <a href="http://mathworld.wolfram.com/BrentsMethod.html">
- * Brent algorithm</a> for finding zeros of real univariate functions.
- * The function should be continuous but not necessarily smooth.
- * The {@code solve} method returns a zero {@code x} of the function {@code f}
- * in the given interval {@code [a, b]} to within a tolerance
- * {@code 2 eps abs(x) + t} where {@code eps} is the relative accuracy and
- * {@code t} is the absolute accuracy.
- * <p>The given interval must bracket the root.</p>
- * <p>
- * The reference implementation is given in chapter 4 of
- * <blockquote>
- * <b>Algorithms for Minimization Without Derivatives</b>,
- * <em>Richard P. Brent</em>,
- * Dover, 2002
- * </blockquote>
- *
- * @see BaseAbstractUnivariateSolver
- */
- public class BrentSolver extends AbstractUnivariateSolver {
- /** Default absolute accuracy. */
- private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
- /**
- * Construct a solver with default absolute accuracy (1e-6).
- */
- public BrentSolver() {
- this(DEFAULT_ABSOLUTE_ACCURACY);
- }
- /**
- * Construct a solver.
- *
- * @param absoluteAccuracy Absolute accuracy.
- */
- public BrentSolver(double absoluteAccuracy) {
- super(absoluteAccuracy);
- }
- /**
- * Construct a solver.
- *
- * @param relativeAccuracy Relative accuracy.
- * @param absoluteAccuracy Absolute accuracy.
- */
- public BrentSolver(double relativeAccuracy,
- double absoluteAccuracy) {
- super(relativeAccuracy, absoluteAccuracy);
- }
- /**
- * Construct a solver.
- *
- * @param relativeAccuracy Relative accuracy.
- * @param absoluteAccuracy Absolute accuracy.
- * @param functionValueAccuracy Function value accuracy.
- *
- * @see BaseAbstractUnivariateSolver#BaseAbstractUnivariateSolver(double,double,double)
- */
- public BrentSolver(double relativeAccuracy,
- double absoluteAccuracy,
- double functionValueAccuracy) {
- super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- protected double doSolve()
- throws MathIllegalArgumentException, MathIllegalStateException {
- double min = getMin();
- double max = getMax();
- final double initial = getStartValue();
- final double functionValueAccuracy = getFunctionValueAccuracy();
- verifySequence(min, initial, max);
- // Return the initial guess if it is good enough.
- double yInitial = computeObjectiveValue(initial);
- if (FastMath.abs(yInitial) <= functionValueAccuracy) {
- return initial;
- }
- // Return the first endpoint if it is good enough.
- double yMin = computeObjectiveValue(min);
- if (FastMath.abs(yMin) <= functionValueAccuracy) {
- return min;
- }
- // Reduce interval if min and initial bracket the root.
- if (yInitial * yMin < 0) {
- return brent(min, initial, yMin, yInitial);
- }
- // Return the second endpoint if it is good enough.
- double yMax = computeObjectiveValue(max);
- if (FastMath.abs(yMax) <= functionValueAccuracy) {
- return max;
- }
- // Reduce interval if initial and max bracket the root.
- if (yInitial * yMax < 0) {
- return brent(initial, max, yInitial, yMax);
- }
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_BRACKETING_INTERVAL,
- min, max, yMin, yMax);
- }
- /**
- * Search for a zero inside the provided interval.
- * This implementation is based on the algorithm described at page 58 of
- * the book
- * <blockquote>
- * <b>Algorithms for Minimization Without Derivatives</b>,
- * <it>Richard P. Brent</it>,
- * Dover 0-486-41998-3
- * </blockquote>
- *
- * @param lo Lower bound of the search interval.
- * @param hi Higher bound of the search interval.
- * @param fLo Function value at the lower bound of the search interval.
- * @param fHi Function value at the higher bound of the search interval.
- * @return the value where the function is zero.
- */
- private double brent(double lo, double hi,
- double fLo, double fHi) {
- double a = lo;
- double fa = fLo;
- double b = hi;
- double fb = fHi;
- double c = a;
- double fc = fa;
- double d = b - a;
- double e = d;
- final double t = getAbsoluteAccuracy();
- final double eps = getRelativeAccuracy();
- while (true) {
- if (FastMath.abs(fc) < FastMath.abs(fb)) {
- a = b;
- b = c;
- c = a;
- fa = fb;
- fb = fc;
- fc = fa;
- }
- final double tol = 2 * eps * FastMath.abs(b) + t;
- final double m = 0.5 * (c - b);
- if (FastMath.abs(m) <= tol ||
- Precision.equals(fb, 0)) {
- return b;
- }
- if (FastMath.abs(e) < tol ||
- FastMath.abs(fa) <= FastMath.abs(fb)) {
- // Force bisection.
- d = m;
- e = d;
- } else {
- double s = fb / fa;
- double p;
- double q;
- // The equality test (a == c) is intentional,
- // it is part of the original Brent's method and
- // it should NOT be replaced by proximity test.
- if (a == c) {
- // Linear interpolation.
- p = 2 * m * s;
- q = 1 - s;
- } else {
- // Inverse quadratic interpolation.
- q = fa / fc;
- final double r = fb / fc;
- p = s * (2 * m * q * (q - r) - (b - a) * (r - 1));
- q = (q - 1) * (r - 1) * (s - 1);
- }
- if (p > 0) {
- q = -q;
- } else {
- p = -p;
- }
- s = e;
- e = d;
- if (p >= 1.5 * m * q - FastMath.abs(tol * q) ||
- p >= FastMath.abs(0.5 * s * q)) {
- // Inverse quadratic interpolation gives a value
- // in the wrong direction, or progress is slow.
- // Fall back to bisection.
- d = m;
- e = d;
- } else {
- d = p / q;
- }
- }
- a = b;
- fa = fb;
- if (FastMath.abs(d) > tol) {
- b += d;
- } else if (m > 0) {
- b += tol;
- } else {
- b -= tol;
- }
- fb = computeObjectiveValue(b);
- if ((fb > 0 && fc > 0) ||
- (fb <= 0 && fc <= 0)) {
- c = a;
- fc = fa;
- d = b - a;
- e = d;
- }
- }
- }
- }