BracketedUnivariateSolver.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.solvers;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.util.FastMath;
- /** Interface for {@link UnivariateSolver (univariate real) root-finding
- * algorithms} that maintain a bracketed solution. There are several advantages
- * to having such root-finding algorithms:
- * <ul>
- * <li>The bracketed solution guarantees that the root is kept within the
- * interval. As such, these algorithms generally also guarantee
- * convergence.</li>
- * <li>The bracketed solution means that we have the opportunity to only
- * return roots that are greater than or equal to the actual root, or
- * are less than or equal to the actual root. That is, we can control
- * whether under-approximations and over-approximations are
- * {@link AllowedSolution allowed solutions}. Other root-finding
- * algorithms can usually only guarantee that the solution (the root that
- * was found) is around the actual root.</li>
- * </ul>
- *
- * <p>For backwards compatibility, all root-finding algorithms must have
- * {@link AllowedSolution#ANY_SIDE ANY_SIDE} as default for the allowed
- * solutions.</p>
- * @param <F> Type of function to solve.
- *
- * @see AllowedSolution
- */
- public interface BracketedUnivariateSolver<F extends UnivariateFunction>
- extends BaseUnivariateSolver<F> {
- /**
- * Solve for a zero in the given interval.
- * A solver may require that the interval brackets a single zero root.
- * Solvers that do require bracketing should be able to handle the case
- * where one of the endpoints is itself a root.
- *
- * @param maxEval Maximum number of evaluations.
- * @param f Function to solve.
- * @param min Lower bound for the interval.
- * @param max Upper bound for the interval.
- * @param allowedSolution The kind of solutions that the root-finding algorithm may
- * accept as solutions.
- * @return A value where the function is zero.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the arguments do not satisfy the requirements specified by the solver.
- * @throws org.hipparchus.exception.MathIllegalStateException if
- * the allowed number of evaluations is exceeded.
- */
- double solve(int maxEval, F f, double min, double max,
- AllowedSolution allowedSolution);
- /**
- * Solve for a zero in the given interval, start at {@code startValue}.
- * A solver may require that the interval brackets a single zero root.
- * Solvers that do require bracketing should be able to handle the case
- * where one of the endpoints is itself a root.
- *
- * @param maxEval Maximum number of evaluations.
- * @param f Function to solve.
- * @param min Lower bound for the interval.
- * @param max Upper bound for the interval.
- * @param startValue Start value to use.
- * @param allowedSolution The kind of solutions that the root-finding algorithm may
- * accept as solutions.
- * @return A value where the function is zero.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the arguments do not satisfy the requirements specified by the solver.
- * @throws org.hipparchus.exception.MathIllegalStateException if
- * the allowed number of evaluations is exceeded.
- */
- double solve(int maxEval, F f, double min, double max, double startValue,
- AllowedSolution allowedSolution);
- /**
- * Solve for a zero in the given interval and return a tolerance interval surrounding
- * the root.
- *
- * <p> It is required that the starting interval brackets a root or that the function
- * value at either end point is 0.0.
- *
- * @param maxEval Maximum number of evaluations.
- * @param f Function to solve.
- * @param min Lower bound for the interval.
- * @param max Upper bound for the interval. Must be greater than {@code min}.
- * @return an interval [ta, tb] such that for some t in [ta, tb] f(t) == 0.0 or has a
- * step wise discontinuity that crosses zero. Both end points also satisfy the
- * convergence criteria so either one could be used as the root. That is the interval
- * satisfies the condition (| tb - ta | <= {@link #getAbsoluteAccuracy() absolute}
- * accuracy + max(ta, tb) * {@link #getRelativeAccuracy() relative} accuracy) or (
- * max(|f(ta)|, |f(tb)|) <= {@link #getFunctionValueAccuracy()}) or there are no
- * floating point numbers between ta and tb. The width of the interval (tb - ta) may
- * be zero.
- * @throws MathIllegalArgumentException if the arguments do not satisfy the
- * requirements specified by the solver.
- * @throws MathIllegalStateException if the allowed number of evaluations is
- * exceeded.
- */
- default Interval solveInterval(int maxEval, F f, double min, double max)
- throws MathIllegalArgumentException, MathIllegalStateException {
- return this.solveInterval(maxEval, f, min, max, min + 0.5 * (max - min));
- }
- /**
- * Solve for a zero in the given interval and return a tolerance interval surrounding
- * the root.
- *
- * <p> It is required that the starting interval brackets a root or that the function
- * value at either end point is 0.0.
- *
- * @param maxEval Maximum number of evaluations.
- * @param startValue start value to use. Must be in the interval [min, max].
- * @param f Function to solve.
- * @param min Lower bound for the interval.
- * @param max Upper bound for the interval. Must be greater than {@code min}.
- * @return an interval [ta, tb] such that for some t in [ta, tb] f(t) == 0.0 or has a
- * step wise discontinuity that crosses zero. Both end points also satisfy the
- * convergence criteria so either one could be used as the root. That is the interval
- * satisfies the condition (| tb - ta | <= {@link #getAbsoluteAccuracy() absolute}
- * accuracy + max(ta, tb) * {@link #getRelativeAccuracy() relative} accuracy) or (
- * max(|f(ta)|, |f(tb)|) <= {@link #getFunctionValueAccuracy()}) or there are no
- * floating point numbers between ta and tb. The width of the interval (tb - ta) may
- * be zero.
- * @throws MathIllegalArgumentException if the arguments do not satisfy the
- * requirements specified by the solver.
- * @throws MathIllegalStateException if the allowed number of evaluations is
- * exceeded.
- */
- Interval solveInterval(int maxEval, F f, double min, double max, double startValue)
- throws MathIllegalArgumentException, MathIllegalStateException;
- /**
- * An interval of a function that brackets a root.
- *
- * <p> Contains two end points and the value of the function at the two end points.
- *
- * @see #solveInterval(int, UnivariateFunction, double, double, double)
- */
- class Interval {
- /** Abscissa on the left end of the interval. */
- private final double leftAbscissa;
- /** Function value at {@link #leftAbscissa}. */
- private final double leftValue;
- /** Abscissa on the right end of the interval, >= {@link #leftAbscissa}. */
- private final double rightAbscissa;
- /** Function value at {@link #rightAbscissa}. */
- private final double rightValue;
- /**
- * Construct a new interval with the given end points.
- *
- * @param leftAbscissa is the abscissa value at the left side of the interval.
- * @param leftValue is the function value at {@code leftAbscissa}.
- * @param rightAbscissa is the abscissa value on the right side of the interval.
- * Must be greater than or equal to {@code leftAbscissa}.
- * @param rightValue is the function value at {@code rightAbscissa}.
- */
- public Interval(final double leftAbscissa,
- final double leftValue,
- final double rightAbscissa,
- final double rightValue) {
- this.leftAbscissa = leftAbscissa;
- this.leftValue = leftValue;
- this.rightAbscissa = rightAbscissa;
- this.rightValue = rightValue;
- }
- /**
- * Get the left abscissa.
- *
- * @return abscissa of the start of the interval.
- */
- public double getLeftAbscissa() {
- return leftAbscissa;
- }
- /**
- * Get the right abscissa.
- *
- * @return abscissa of the end of the interval.
- */
- public double getRightAbscissa() {
- return rightAbscissa;
- }
- /**
- * Get the function value at {@link #getLeftAbscissa()}.
- *
- * @return value of the function at the start of the interval.
- */
- public double getLeftValue() {
- return leftValue;
- }
- /**
- * Get the function value at {@link #getRightAbscissa()}.
- *
- * @return value of the function at the end of the interval.
- */
- public double getRightValue() {
- return rightValue;
- }
- /**
- * Get the abscissa corresponding to the allowed side.
- *
- * @param allowed side of the root.
- * @return the abscissa on the selected side of the root.
- */
- public double getSide(final AllowedSolution allowed) {
- final double xA = this.getLeftAbscissa();
- final double yA = this.getLeftValue();
- final double xB = this.getRightAbscissa();
- switch (allowed) {
- case ANY_SIDE:
- final double absYA = FastMath.abs(this.getLeftValue());
- final double absYB = FastMath.abs(this.getRightValue());
- return absYA < absYB ? xA : xB;
- case LEFT_SIDE:
- return xA;
- case RIGHT_SIDE:
- return xB;
- case BELOW_SIDE:
- return (yA <= 0) ? xA : xB;
- case ABOVE_SIDE:
- return (yA < 0) ? xB : xA;
- default:
- // this should never happen
- throw MathRuntimeException.createInternalError();
- }
- }
- }
- }