BracketedRealFieldUnivariateSolver.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.solvers;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.CalculusFieldUnivariateFunction;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.exception.MathRuntimeException;
- /** Interface for {@link UnivariateSolver (univariate real) root-finding
- * algorithms} that maintain a bracketed solution. There are several advantages
- * to having such root-finding algorithms:
- * <ul>
- * <li>The bracketed solution guarantees that the root is kept within the
- * interval. As such, these algorithms generally also guarantee
- * convergence.</li>
- * <li>The bracketed solution means that we have the opportunity to only
- * return roots that are greater than or equal to the actual root, or
- * are less than or equal to the actual root. That is, we can control
- * whether under-approximations and over-approximations are
- * {@link AllowedSolution allowed solutions}. Other root-finding
- * algorithms can usually only guarantee that the solution (the root that
- * was found) is around the actual root.</li>
- * </ul>
- *
- * <p>For backwards compatibility, all root-finding algorithms must have
- * {@link AllowedSolution#ANY_SIDE ANY_SIDE} as default for the allowed
- * solutions.</p>
- *
- * @see AllowedSolution
- * @param <T> the type of the field elements
- */
- public interface BracketedRealFieldUnivariateSolver<T extends CalculusFieldElement<T>> {
- /**
- * Get the maximum number of function evaluations.
- *
- * @return the maximum number of function evaluations.
- */
- int getMaxEvaluations();
- /**
- * Get the number of evaluations of the objective function.
- * The number of evaluations corresponds to the last call to the
- * {@code optimize} method. It is 0 if the method has not been
- * called yet.
- *
- * @return the number of evaluations of the objective function.
- */
- int getEvaluations();
- /**
- * Get the absolute accuracy of the solver. Solutions returned by the
- * solver should be accurate to this tolerance, i.e., if ε is the
- * absolute accuracy of the solver and {@code v} is a value returned by
- * one of the {@code solve} methods, then a root of the function should
- * exist somewhere in the interval ({@code v} - ε, {@code v} + ε).
- *
- * @return the absolute accuracy.
- */
- T getAbsoluteAccuracy();
- /**
- * Get the relative accuracy of the solver. The contract for relative
- * accuracy is the same as {@link #getAbsoluteAccuracy()}, but using
- * relative, rather than absolute error. If ρ is the relative accuracy
- * configured for a solver and {@code v} is a value returned, then a root
- * of the function should exist somewhere in the interval
- * ({@code v} - ρ {@code v}, {@code v} + ρ {@code v}).
- *
- * @return the relative accuracy.
- */
- T getRelativeAccuracy();
- /**
- * Get the function value accuracy of the solver. If {@code v} is
- * a value returned by the solver for a function {@code f},
- * then by contract, {@code |f(v)|} should be less than or equal to
- * the function value accuracy configured for the solver.
- *
- * @return the function value accuracy.
- */
- T getFunctionValueAccuracy();
- /**
- * Solve for a zero in the given interval.
- * A solver may require that the interval brackets a single zero root.
- * Solvers that do require bracketing should be able to handle the case
- * where one of the endpoints is itself a root.
- *
- * @param maxEval Maximum number of evaluations.
- * @param f Function to solve.
- * @param min Lower bound for the interval.
- * @param max Upper bound for the interval.
- * @param allowedSolution The kind of solutions that the root-finding algorithm may
- * accept as solutions.
- * @return A value where the function is zero.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the arguments do not satisfy the requirements specified by the solver.
- * @throws org.hipparchus.exception.MathIllegalStateException if
- * the allowed number of evaluations is exceeded.
- */
- T solve(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max,
- AllowedSolution allowedSolution);
- /**
- * Solve for a zero in the given interval, start at {@code startValue}.
- * A solver may require that the interval brackets a single zero root.
- * Solvers that do require bracketing should be able to handle the case
- * where one of the endpoints is itself a root.
- *
- * @param maxEval Maximum number of evaluations.
- * @param f Function to solve.
- * @param min Lower bound for the interval.
- * @param max Upper bound for the interval.
- * @param startValue Start value to use.
- * @param allowedSolution The kind of solutions that the root-finding algorithm may
- * accept as solutions.
- * @return A value where the function is zero.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the arguments do not satisfy the requirements specified by the solver.
- * @throws org.hipparchus.exception.MathIllegalStateException if
- * the allowed number of evaluations is exceeded.
- */
- T solve(int maxEval, CalculusFieldUnivariateFunction<T> f, T min, T max, T startValue,
- AllowedSolution allowedSolution);
- /**
- * Solve for a zero in the given interval and return a tolerance interval surrounding
- * the root.
- *
- * <p> It is required that the starting interval brackets a root.
- *
- * @param maxEval Maximum number of evaluations.
- * @param f Function to solve.
- * @param min Lower bound for the interval. f(min) != 0.0.
- * @param max Upper bound for the interval. f(max) != 0.0.
- * @return an interval [ta, tb] such that for some t in [ta, tb] f(t) == 0.0 or has a
- * step wise discontinuity that crosses zero. Both end points also satisfy the
- * convergence criteria so either one could be used as the root. That is the interval
- * satisfies the condition (| tb - ta | <= {@link #getAbsoluteAccuracy() absolute}
- * accuracy + max(ta, tb) * {@link #getRelativeAccuracy() relative} accuracy) or (
- * max(|f(ta)|, |f(tb)|) <= {@link #getFunctionValueAccuracy()}) or there are no
- * numbers in the field between ta and tb. The width of the interval (tb - ta) may be
- * zero.
- * @throws MathIllegalArgumentException if the arguments do not satisfy the
- * requirements specified by the solver.
- * @throws MathIllegalStateException if the allowed number of evaluations is
- * exceeded.
- */
- default Interval<T> solveInterval(int maxEval,
- CalculusFieldUnivariateFunction<T> f,
- T min,
- T max)
- throws MathIllegalArgumentException, MathIllegalStateException {
- return this.solveInterval(maxEval, f, min, max, min.add(max.subtract(min).multiply(0.5)));
- }
- /**
- * Solve for a zero in the given interval and return a tolerance interval surrounding
- * the root.
- *
- * <p> It is required that the starting interval brackets a root.
- *
- * @param maxEval Maximum number of evaluations.
- * @param startValue start value to use.
- * @param f Function to solve.
- * @param min Lower bound for the interval. f(min) != 0.0.
- * @param max Upper bound for the interval. f(max) != 0.0.
- * @return an interval [ta, tb] such that for some t in [ta, tb] f(t) == 0.0 or has a
- * step wise discontinuity that crosses zero. Both end points also satisfy the
- * convergence criteria so either one could be used as the root. That is the interval
- * satisfies the condition (| tb - ta | <= {@link #getAbsoluteAccuracy() absolute}
- * accuracy + max(ta, tb) * {@link #getRelativeAccuracy() relative} accuracy) or (
- * max(|f(ta)|, |f(tb)|) <= {@link #getFunctionValueAccuracy()}) or numbers in the
- * field between ta and tb. The width of the interval (tb - ta) may be zero.
- * @throws MathIllegalArgumentException if the arguments do not satisfy the
- * requirements specified by the solver.
- * @throws MathIllegalStateException if the allowed number of evaluations is
- * exceeded.
- */
- Interval<T> solveInterval(int maxEval,
- CalculusFieldUnivariateFunction<T> f,
- T min,
- T max,
- T startValue)
- throws MathIllegalArgumentException, MathIllegalStateException;
- /**
- * An interval of a function that brackets a root.
- * <p>
- * Contains two end points and the value of the function at the two end points.
- *
- * @see #solveInterval(int, CalculusFieldUnivariateFunction, CalculusFieldElement,
- * CalculusFieldElement)
- * @param <T> the element type
- */
- class Interval<T extends CalculusFieldElement<T>> {
- /** Abscissa on the left end of the interval. */
- private final T leftAbscissa;
- /** Function value at {@link #leftAbscissa}. */
- private final T leftValue;
- /** Abscissa on the right end of the interval, >= {@link #leftAbscissa}. */
- private final T rightAbscissa;
- /** Function value at {@link #rightAbscissa}. */
- private final T rightValue;
- /**
- * Construct a new interval with the given end points.
- *
- * @param leftAbscissa is the abscissa value at the left side of the interval.
- * @param leftValue is the function value at {@code leftAbscissa}.
- * @param rightAbscissa is the abscissa value on the right side of the interval.
- * Must be greater than or equal to {@code leftAbscissa}.
- * @param rightValue is the function value at {@code rightAbscissa}.
- */
- public Interval(final T leftAbscissa,
- final T leftValue,
- final T rightAbscissa,
- final T rightValue) {
- this.leftAbscissa = leftAbscissa;
- this.leftValue = leftValue;
- this.rightAbscissa = rightAbscissa;
- this.rightValue = rightValue;
- }
- /**
- * Get the left abscissa.
- *
- * @return abscissa of the start of the interval.
- */
- public T getLeftAbscissa() {
- return leftAbscissa;
- }
- /**
- * Get the right abscissa.
- *
- * @return abscissa of the end of the interval.
- */
- public T getRightAbscissa() {
- return rightAbscissa;
- }
- /**
- * Get the function value at {@link #getLeftAbscissa()}.
- *
- * @return value of the function at the start of the interval.
- */
- public T getLeftValue() {
- return leftValue;
- }
- /**
- * Get the function value at {@link #getRightAbscissa()}.
- *
- * @return value of the function at the end of the interval.
- */
- public T getRightValue() {
- return rightValue;
- }
- /**
- * Get the abscissa corresponding to the allowed side.
- *
- * @param allowed side of the root.
- * @return the abscissa on the selected side of the root.
- */
- public T getSide(final AllowedSolution allowed) {
- final T xA = this.getLeftAbscissa();
- final T yA = this.getLeftValue();
- final T xB = this.getRightAbscissa();
- switch (allowed) {
- case ANY_SIDE:
- final T absYA = this.getLeftValue().abs();
- final T absYB = this.getRightValue().abs();
- return absYA.subtract(absYB).getReal() < 0 ? xA : xB;
- case LEFT_SIDE:
- return xA;
- case RIGHT_SIDE:
- return xB;
- case BELOW_SIDE:
- return (yA.getReal() <= 0) ? xA : xB;
- case ABOVE_SIDE:
- return (yA.getReal() < 0) ? xB : xA;
- default:
- // this should never happen
- throw MathRuntimeException.createInternalError();
- }
- }
- }
- }