PolynomialSplineFunction.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.polynomials;
- import java.util.Arrays;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.FieldUnivariateFunction;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- /**
- * Represents a polynomial spline function.
- * <p>
- * A <strong>polynomial spline function</strong> consists of a set of
- * <i>interpolating polynomials</i> and an ascending array of domain
- * <i>knot points</i>, determining the intervals over which the spline function
- * is defined by the constituent polynomials. The polynomials are assumed to
- * have been computed to match the values of another function at the knot
- * points. The value consistency constraints are not currently enforced by
- * <code>PolynomialSplineFunction</code> itself, but are assumed to hold among
- * the polynomials and knot points passed to the constructor.</p>
- * <p>
- * N.B.: The polynomials in the <code>polynomials</code> property must be
- * centered on the knot points to compute the spline function values.
- * See below.</p>
- * <p>
- * The domain of the polynomial spline function is
- * <code>[smallest knot, largest knot]</code>. Attempts to evaluate the
- * function at values outside of this range generate IllegalArgumentExceptions.
- * </p>
- * <p>
- * The value of the polynomial spline function for an argument <code>x</code>
- * is computed as follows:
- * <ol>
- * <li>The knot array is searched to find the segment to which <code>x</code>
- * belongs. If <code>x</code> is less than the smallest knot point or greater
- * than the largest one, an <code>IllegalArgumentException</code>
- * is thrown.</li>
- * <li> Let <code>j</code> be the index of the largest knot point that is less
- * than or equal to <code>x</code>. The value returned is
- * {@code polynomials[j](x - knot[j])}</li></ol>
- *
- */
- public class PolynomialSplineFunction implements UnivariateDifferentiableFunction, FieldUnivariateFunction {
- /**
- * Spline segment interval delimiters (knots).
- * Size is n + 1 for n segments.
- */
- private final double[] knots;
- /**
- * The polynomial functions that make up the spline. The first element
- * determines the value of the spline over the first subinterval, the
- * second over the second, etc. Spline function values are determined by
- * evaluating these functions at {@code (x - knot[i])} where i is the
- * knot segment to which x belongs.
- */
- private final PolynomialFunction[] polynomials;
- /**
- * Number of spline segments. It is equal to the number of polynomials and
- * to the number of partition points - 1.
- */
- private final int n;
- /**
- * Construct a polynomial spline function with the given segment delimiters
- * and interpolating polynomials.
- * The constructor copies both arrays and assigns the copies to the knots
- * and polynomials properties, respectively.
- *
- * @param knots Spline segment interval delimiters.
- * @param polynomials Polynomial functions that make up the spline.
- * @throws NullArgumentException if either of the input arrays is {@code null}.
- * @throws MathIllegalArgumentException if knots has length less than 2.
- * @throws MathIllegalArgumentException if {@code polynomials.length != knots.length - 1}.
- * @throws MathIllegalArgumentException if the {@code knots} array is not strictly increasing.
- *
- */
- public PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials)
- throws MathIllegalArgumentException, NullArgumentException {
- if (knots == null ||
- polynomials == null) {
- throw new NullArgumentException();
- }
- if (knots.length < 2) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION,
- 2, knots.length, false);
- }
- MathUtils.checkDimension(polynomials.length, knots.length - 1);
- MathArrays.checkOrder(knots);
- this.n = knots.length -1;
- this.knots = new double[n + 1];
- System.arraycopy(knots, 0, this.knots, 0, n + 1);
- this.polynomials = new PolynomialFunction[n];
- System.arraycopy(polynomials, 0, this.polynomials, 0, n);
- }
- /**
- * Compute the value for the function.
- * See {@link PolynomialSplineFunction} for details on the algorithm for
- * computing the value of the function.
- *
- * @param v Point for which the function value should be computed.
- * @return the value.
- * @throws MathIllegalArgumentException if {@code v} is outside of the domain of the
- * spline function (smaller than the smallest knot point or larger than the
- * largest knot point).
- */
- @Override
- public double value(double v) {
- MathUtils.checkRangeInclusive(v, knots[0], knots[n]);
- int i = Arrays.binarySearch(knots, v);
- if (i < 0) {
- i = -i - 2;
- }
- // This will handle the case where v is the last knot value
- // There are only n-1 polynomials, so if v is the last knot
- // then we will use the last polynomial to calculate the value.
- if ( i >= polynomials.length ) {
- i--;
- }
- return polynomials[i].value(v - knots[i]);
- }
- /**
- * Get the derivative of the polynomial spline function.
- *
- * @return the derivative function.
- */
- public PolynomialSplineFunction polynomialSplineDerivative() {
- PolynomialFunction[] derivativePolynomials = new PolynomialFunction[n];
- for (int i = 0; i < n; i++) {
- derivativePolynomials[i] = polynomials[i].polynomialDerivative();
- }
- return new PolynomialSplineFunction(knots, derivativePolynomials);
- }
- /** {@inheritDoc}
- */
- @Override
- public <T extends Derivative<T>> T value(final T t) {
- final double t0 = t.getReal();
- MathUtils.checkRangeInclusive(t0, knots[0], knots[n]);
- int i = Arrays.binarySearch(knots, t0);
- if (i < 0) {
- i = -i - 2;
- }
- // This will handle the case where t is the last knot value
- // There are only n-1 polynomials, so if t is the last knot
- // then we will use the last polynomial to calculate the value.
- if ( i >= polynomials.length ) {
- i--;
- }
- return polynomials[i].value(t.subtract(knots[i]));
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public <T extends CalculusFieldElement<T>> T value(final T t) {
- final double t0 = t.getReal();
- MathUtils.checkRangeInclusive(t0, knots[0], knots[n]);
- int i = Arrays.binarySearch(knots, t0);
- if (i < 0) {
- i = -i - 2;
- }
- // This will handle the case where t is the last knot value
- // There are only n-1 polynomials, so if t is the last knot
- // then we will use the last polynomial to calculate the value.
- if ( i >= polynomials.length ) {
- i--;
- }
- return polynomials[i].value(t.subtract(knots[i]));
- }
- /**
- * Get the number of spline segments.
- * It is also the number of polynomials and the number of knot points - 1.
- *
- * @return the number of spline segments.
- */
- public int getN() {
- return n;
- }
- /**
- * Get a copy of the interpolating polynomials array.
- * It returns a fresh copy of the array. Changes made to the copy will
- * not affect the polynomials property.
- *
- * @return the interpolating polynomials.
- */
- public PolynomialFunction[] getPolynomials() {
- PolynomialFunction[] p = new PolynomialFunction[n];
- System.arraycopy(polynomials, 0, p, 0, n);
- return p;
- }
- /**
- * Get an array copy of the knot points.
- * It returns a fresh copy of the array. Changes made to the copy
- * will not affect the knots property.
- *
- * @return the knot points.
- */
- public double[] getKnots() {
- double[] out = new double[n + 1];
- System.arraycopy(knots, 0, out, 0, n + 1);
- return out;
- }
- /**
- * Indicates whether a point is within the interpolation range.
- *
- * @param x Point.
- * @return {@code true} if {@code x} is a valid point.
- */
- public boolean isValidPoint(double x) {
- return x >= knots[0] && x <= knots[n];
- }
- }