PolynomialFunctionNewtonForm.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.polynomials;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.FieldUnivariateFunction;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.MathUtils;
- /**
- * Implements the representation of a real polynomial function in
- * Newton Form. For reference, see <b>Elementary Numerical Analysis</b>,
- * ISBN 0070124477, chapter 2.
- * <p>
- * The formula of polynomial in Newton form is
- * p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
- * a[n](x-c[0])(x-c[1])...(x-c[n-1])
- * Note that the length of a[] is one more than the length of c[]</p>
- *
- */
- public class PolynomialFunctionNewtonForm implements UnivariateDifferentiableFunction, FieldUnivariateFunction {
- /**
- * The coefficients of the polynomial, ordered by degree -- i.e.
- * coefficients[0] is the constant term and coefficients[n] is the
- * coefficient of x^n where n is the degree of the polynomial.
- */
- private double[] coefficients;
- /**
- * Centers of the Newton polynomial.
- */
- private final double[] c;
- /**
- * When all c[i] = 0, a[] becomes normal polynomial coefficients,
- * i.e. a[i] = coefficients[i].
- */
- private final double[] a;
- /**
- * Whether the polynomial coefficients are available.
- */
- private boolean coefficientsComputed;
- /**
- * Construct a Newton polynomial with the given a[] and c[]. The order of
- * centers are important in that if c[] shuffle, then values of a[] would
- * completely change, not just a permutation of old a[].
- * <p>
- * The constructor makes copy of the input arrays and assigns them.</p>
- *
- * @param a Coefficients in Newton form formula.
- * @param c Centers.
- * @throws NullArgumentException if any argument is {@code null}.
- * @throws MathIllegalArgumentException if any array has zero length.
- * @throws MathIllegalArgumentException if the size difference between
- * {@code a} and {@code c} is not equal to 1.
- */
- public PolynomialFunctionNewtonForm(double[] a, double[] c)
- throws MathIllegalArgumentException, NullArgumentException {
- verifyInputArray(a, c);
- this.a = new double[a.length];
- this.c = new double[c.length];
- System.arraycopy(a, 0, this.a, 0, a.length);
- System.arraycopy(c, 0, this.c, 0, c.length);
- coefficientsComputed = false;
- }
- /**
- * Calculate the function value at the given point.
- *
- * @param z Point at which the function value is to be computed.
- * @return the function value.
- */
- @Override
- public double value(double z) {
- return evaluate(a, c, z);
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public <T extends Derivative<T>> T value(final T t) {
- verifyInputArray(a, c);
- final int n = c.length;
- T value = t.getField().getZero().add(a[n]);
- for (int i = n - 1; i >= 0; i--) {
- value = t.subtract(c[i]).multiply(value).add(a[i]);
- }
- return value;
- }
- /**
- * {@inheritDoc}
- */
- @Override
- public <T extends CalculusFieldElement<T>> T value(final T t) {
- verifyInputArray(a, c);
- final int n = c.length;
- T value = t.getField().getZero().add(a[n]);
- for (int i = n - 1; i >= 0; i--) {
- value = t.subtract(c[i]).multiply(value).add(a[i]);
- }
- return value;
- }
- /**
- * Returns the degree of the polynomial.
- *
- * @return the degree of the polynomial
- */
- public int degree() {
- return c.length;
- }
- /**
- * Returns a copy of coefficients in Newton form formula.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- *
- * @return a fresh copy of coefficients in Newton form formula
- */
- public double[] getNewtonCoefficients() {
- double[] out = new double[a.length];
- System.arraycopy(a, 0, out, 0, a.length);
- return out;
- }
- /**
- * Returns a copy of the centers array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- *
- * @return a fresh copy of the centers array.
- */
- public double[] getCenters() {
- double[] out = new double[c.length];
- System.arraycopy(c, 0, out, 0, c.length);
- return out;
- }
- /**
- * Returns a copy of the coefficients array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- *
- * @return a fresh copy of the coefficients array.
- */
- public double[] getCoefficients() {
- if (!coefficientsComputed) {
- computeCoefficients();
- }
- double[] out = new double[coefficients.length];
- System.arraycopy(coefficients, 0, out, 0, coefficients.length);
- return out;
- }
- /**
- * Evaluate the Newton polynomial using nested multiplication. It is
- * also called <a href="http://mathworld.wolfram.com/HornersRule.html">
- * Horner's Rule</a> and takes O(N) time.
- *
- * @param a Coefficients in Newton form formula.
- * @param c Centers.
- * @param z Point at which the function value is to be computed.
- * @return the function value.
- * @throws NullArgumentException if any argument is {@code null}.
- * @throws MathIllegalArgumentException if any array has zero length.
- * @throws MathIllegalArgumentException if the size difference between
- * {@code a} and {@code c} is not equal to 1.
- */
- public static double evaluate(double[] a, double[] c, double z)
- throws MathIllegalArgumentException, NullArgumentException {
- verifyInputArray(a, c);
- final int n = c.length;
- double value = a[n];
- for (int i = n - 1; i >= 0; i--) {
- value = a[i] + (z - c[i]) * value;
- }
- return value;
- }
- /**
- * Calculate the normal polynomial coefficients given the Newton form.
- * It also uses nested multiplication but takes O(N^2) time.
- */
- protected void computeCoefficients() {
- final int n = degree();
- coefficients = new double[n+1];
- for (int i = 0; i <= n; i++) {
- coefficients[i] = 0.0;
- }
- coefficients[0] = a[n];
- for (int i = n-1; i >= 0; i--) {
- for (int j = n-i; j > 0; j--) {
- coefficients[j] = coefficients[j-1] - c[i] * coefficients[j];
- }
- coefficients[0] = a[i] - c[i] * coefficients[0];
- }
- coefficientsComputed = true;
- }
- /**
- * Verifies that the input arrays are valid.
- * <p>
- * The centers must be distinct for interpolation purposes, but not
- * for general use. Thus it is not verified here.</p>
- *
- * @param a the coefficients in Newton form formula
- * @param c the centers
- * @throws NullArgumentException if any argument is {@code null}.
- * @throws MathIllegalArgumentException if any array has zero length.
- * @throws MathIllegalArgumentException if the size difference between
- * {@code a} and {@code c} is not equal to 1.
- */
- protected static void verifyInputArray(double[] a, double[] c)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(a);
- MathUtils.checkNotNull(c);
- if (a.length == 0 || c.length == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- if (a.length != c.length + 1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.ARRAY_SIZES_SHOULD_HAVE_DIFFERENCE_1,
- a.length, c.length);
- }
- }
- }