PolynomialFunctionLagrangeForm.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.polynomials;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /**
- * Implements the representation of a real polynomial function in
- * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
- * Lagrange Form</a>. For reference, see <b>Introduction to Numerical
- * Analysis</b>, ISBN 038795452X, chapter 2.
- * <p>
- * The approximated function should be smooth enough for Lagrange polynomial
- * to work well. Otherwise, consider using splines instead.</p>
- *
- */
- public class PolynomialFunctionLagrangeForm implements UnivariateFunction {
- /**
- * The coefficients of the polynomial, ordered by degree -- i.e.
- * coefficients[0] is the constant term and coefficients[n] is the
- * coefficient of x^n where n is the degree of the polynomial.
- */
- private double[] coefficients;
- /**
- * Interpolating points (abscissas).
- */
- private final double[] x;
- /**
- * Function values at interpolating points.
- */
- private final double[] y;
- /**
- * Whether the polynomial coefficients are available.
- */
- private boolean coefficientsComputed;
- /**
- * Construct a Lagrange polynomial with the given abscissas and function
- * values. The order of interpolating points are not important.
- * <p>
- * The constructor makes copy of the input arrays and assigns them.</p>
- *
- * @param x interpolating points
- * @param y function values at interpolating points
- * @throws MathIllegalArgumentException if the array lengths are different.
- * @throws MathIllegalArgumentException if the number of points is less than 2.
- * @throws MathIllegalArgumentException
- * if two abscissae have the same value.
- */
- public PolynomialFunctionLagrangeForm(double[] x, double[] y)
- throws MathIllegalArgumentException {
- this.x = new double[x.length];
- this.y = new double[y.length];
- System.arraycopy(x, 0, this.x, 0, x.length);
- System.arraycopy(y, 0, this.y, 0, y.length);
- coefficientsComputed = false;
- if (!verifyInterpolationArray(x, y, false)) {
- MathArrays.sortInPlace(this.x, this.y);
- // Second check in case some abscissa is duplicated.
- verifyInterpolationArray(this.x, this.y, true);
- }
- }
- /**
- * Calculate the function value at the given point.
- *
- * @param z Point at which the function value is to be computed.
- * @return the function value.
- * @throws MathIllegalArgumentException if {@code x} and {@code y} have
- * different lengths.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if {@code x} is not sorted in strictly increasing order.
- * @throws MathIllegalArgumentException if the size of {@code x} is less
- * than 2.
- */
- @Override
- public double value(double z) {
- return evaluateInternal(x, y, z);
- }
- /**
- * Returns the degree of the polynomial.
- *
- * @return the degree of the polynomial
- */
- public int degree() {
- return x.length - 1;
- }
- /**
- * Returns a copy of the interpolating points array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- *
- * @return a fresh copy of the interpolating points array
- */
- public double[] getInterpolatingPoints() {
- double[] out = new double[x.length];
- System.arraycopy(x, 0, out, 0, x.length);
- return out;
- }
- /**
- * Returns a copy of the interpolating values array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- *
- * @return a fresh copy of the interpolating values array
- */
- public double[] getInterpolatingValues() {
- double[] out = new double[y.length];
- System.arraycopy(y, 0, out, 0, y.length);
- return out;
- }
- /**
- * Returns a copy of the coefficients array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- * <p>
- * Note that coefficients computation can be ill-conditioned. Use with caution
- * and only when it is necessary.</p>
- *
- * @return a fresh copy of the coefficients array
- */
- public double[] getCoefficients() {
- if (!coefficientsComputed) {
- computeCoefficients();
- }
- double[] out = new double[coefficients.length];
- System.arraycopy(coefficients, 0, out, 0, coefficients.length);
- return out;
- }
- /**
- * Evaluate the Lagrange polynomial using
- * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
- * Neville's Algorithm</a>. It takes O(n^2) time.
- *
- * @param x Interpolating points array.
- * @param y Interpolating values array.
- * @param z Point at which the function value is to be computed.
- * @return the function value.
- * @throws MathIllegalArgumentException if {@code x} and {@code y} have
- * different lengths.
- * @throws MathIllegalArgumentException
- * if {@code x} is not sorted in strictly increasing order.
- * @throws MathIllegalArgumentException if the size of {@code x} is less
- * than 2.
- */
- public static double evaluate(double[] x, double[] y, double z)
- throws MathIllegalArgumentException {
- if (verifyInterpolationArray(x, y, false)) {
- return evaluateInternal(x, y, z);
- }
- // Array is not sorted.
- final double[] xNew = new double[x.length];
- final double[] yNew = new double[y.length];
- System.arraycopy(x, 0, xNew, 0, x.length);
- System.arraycopy(y, 0, yNew, 0, y.length);
- MathArrays.sortInPlace(xNew, yNew);
- // Second check in case some abscissa is duplicated.
- verifyInterpolationArray(xNew, yNew, true);
- return evaluateInternal(xNew, yNew, z);
- }
- /**
- * Evaluate the Lagrange polynomial using
- * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
- * Neville's Algorithm</a>. It takes O(n^2) time.
- *
- * @param x Interpolating points array.
- * @param y Interpolating values array.
- * @param z Point at which the function value is to be computed.
- * @return the function value.
- * @throws MathIllegalArgumentException if {@code x} and {@code y} have
- * different lengths.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if {@code x} is not sorted in strictly increasing order.
- * @throws MathIllegalArgumentException if the size of {@code x} is less
- * than 2.
- */
- private static double evaluateInternal(double[] x, double[] y, double z) {
- int nearest = 0;
- final int n = x.length;
- final double[] c = new double[n];
- final double[] d = new double[n];
- double minDist = Double.POSITIVE_INFINITY;
- for (int i = 0; i < n; i++) {
- // initialize the difference arrays
- c[i] = y[i];
- d[i] = y[i];
- // find out the abscissa closest to z
- final double dist = FastMath.abs(z - x[i]);
- if (dist < minDist) {
- nearest = i;
- minDist = dist;
- }
- }
- // initial approximation to the function value at z
- double value = y[nearest];
- for (int i = 1; i < n; i++) {
- for (int j = 0; j < n-i; j++) {
- final double tc = x[j] - z;
- final double td = x[i+j] - z;
- final double divider = x[j] - x[i+j];
- // update the difference arrays
- final double w = (c[j+1] - d[j]) / divider;
- c[j] = tc * w;
- d[j] = td * w;
- }
- // sum up the difference terms to get the final value
- if (nearest < 0.5*(n-i+1)) {
- value += c[nearest]; // fork down
- } else {
- nearest--;
- value += d[nearest]; // fork up
- }
- }
- return value;
- }
- /**
- * Calculate the coefficients of Lagrange polynomial from the
- * interpolation data. It takes O(n^2) time.
- * Note that this computation can be ill-conditioned: Use with caution
- * and only when it is necessary.
- */
- protected void computeCoefficients() {
- final int n = degree() + 1;
- coefficients = new double[n];
- for (int i = 0; i < n; i++) {
- coefficients[i] = 0.0;
- }
- // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
- final double[] c = new double[n+1];
- c[0] = 1.0;
- for (int i = 0; i < n; i++) {
- for (int j = i; j > 0; j--) {
- c[j] = c[j-1] - c[j] * x[i];
- }
- c[0] *= -x[i];
- c[i+1] = 1;
- }
- final double[] tc = new double[n];
- for (int i = 0; i < n; i++) {
- // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
- double d = 1;
- for (int j = 0; j < n; j++) {
- if (i != j) {
- d *= x[i] - x[j];
- }
- }
- final double t = y[i] / d;
- // Lagrange polynomial is the sum of n terms, each of which is a
- // polynomial of degree n-1. tc[] are the coefficients of the i-th
- // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
- tc[n-1] = c[n]; // actually c[n] = 1
- coefficients[n-1] += t * tc[n-1];
- for (int j = n-2; j >= 0; j--) {
- tc[j] = c[j+1] + tc[j+1] * x[i];
- coefficients[j] += t * tc[j];
- }
- }
- coefficientsComputed = true;
- }
- /**
- * Check that the interpolation arrays are valid.
- * The arrays features checked by this method are that both arrays have the
- * same length and this length is at least 2.
- *
- * @param x Interpolating points array.
- * @param y Interpolating values array.
- * @param abort Whether to throw an exception if {@code x} is not sorted.
- * @throws MathIllegalArgumentException if the array lengths are different.
- * @throws MathIllegalArgumentException if the number of points is less than 2.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if {@code x} is not sorted in strictly increasing order and {@code abort}
- * is {@code true}.
- * @return {@code false} if the {@code x} is not sorted in increasing order,
- * {@code true} otherwise.
- * @see #evaluate(double[], double[], double)
- * @see #computeCoefficients()
- */
- public static boolean verifyInterpolationArray(double[] x, double[] y, boolean abort)
- throws MathIllegalArgumentException {
- MathArrays.checkEqualLength(x, y);
- if (x.length < 2) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true);
- }
- return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort);
- }
- }