PolynomialFunction.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.polynomials;
- import java.io.Serializable;
- import java.util.Arrays;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.FieldUnivariateFunction;
- import org.hipparchus.analysis.ParametricUnivariateFunction;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Immutable representation of a real polynomial function with real coefficients.
- * <p>
- * <a href="http://mathworld.wolfram.com/HornersMethod.html">Horner's Method</a>
- * is used to evaluate the function.</p>
- *
- */
- public class PolynomialFunction implements UnivariateDifferentiableFunction, FieldUnivariateFunction, Serializable {
- /**
- * Serialization identifier
- */
- private static final long serialVersionUID = -7726511984200295583L;
- /**
- * The coefficients of the polynomial, ordered by degree -- i.e.,
- * coefficients[0] is the constant term and coefficients[n] is the
- * coefficient of x^n where n is the degree of the polynomial.
- */
- private final double[] coefficients;
- /**
- * Construct a polynomial with the given coefficients. The first element
- * of the coefficients array is the constant term. Higher degree
- * coefficients follow in sequence. The degree of the resulting polynomial
- * is the index of the last non-null element of the array, or 0 if all elements
- * are null.
- * <p>
- * The constructor makes a copy of the input array and assigns the copy to
- * the coefficients property.</p>
- *
- * @param c Polynomial coefficients.
- * @throws NullArgumentException if {@code c} is {@code null}.
- * @throws MathIllegalArgumentException if {@code c} is empty.
- */
- public PolynomialFunction(double... c)
- throws MathIllegalArgumentException, NullArgumentException {
- super();
- MathUtils.checkNotNull(c);
- int n = c.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- while ((n > 1) && (c[n - 1] == 0)) {
- --n;
- }
- this.coefficients = new double[n];
- System.arraycopy(c, 0, this.coefficients, 0, n);
- }
- /**
- * Compute the value of the function for the given argument.
- * <p>
- * The value returned is </p><p>
- * {@code coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]}
- * </p>
- *
- * @param x Argument for which the function value should be computed.
- * @return the value of the polynomial at the given point.
- *
- * @see org.hipparchus.analysis.UnivariateFunction#value(double)
- */
- @Override
- public double value(double x) {
- return evaluate(coefficients, x);
- }
- /**
- * Returns the degree of the polynomial.
- *
- * @return the degree of the polynomial.
- */
- public int degree() {
- return coefficients.length - 1;
- }
- /**
- * Returns a copy of the coefficients array.
- * <p>
- * Changes made to the returned copy will not affect the coefficients of
- * the polynomial.</p>
- *
- * @return a fresh copy of the coefficients array.
- */
- public double[] getCoefficients() {
- return coefficients.clone();
- }
- /**
- * Uses Horner's Method to evaluate the polynomial with the given coefficients at
- * the argument.
- *
- * @param coefficients Coefficients of the polynomial to evaluate.
- * @param argument Input value.
- * @return the value of the polynomial.
- * @throws MathIllegalArgumentException if {@code coefficients} is empty.
- * @throws NullArgumentException if {@code coefficients} is {@code null}.
- */
- protected static double evaluate(double[] coefficients, double argument)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(coefficients);
- int n = coefficients.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- double result = coefficients[n - 1];
- for (int j = n - 2; j >= 0; j--) {
- result = argument * result + coefficients[j];
- }
- return result;
- }
- /** {@inheritDoc}
- * @throws MathIllegalArgumentException if {@code coefficients} is empty.
- * @throws NullArgumentException if {@code coefficients} is {@code null}.
- */
- @Override
- public <T extends Derivative<T>> T value(final T t)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(coefficients);
- int n = coefficients.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- T result = t.getField().getZero().add(coefficients[n - 1]);
- for (int j = n - 2; j >= 0; j--) {
- result = result.multiply(t).add(coefficients[j]);
- }
- return result;
- }
- /** {@inheritDoc}
- * @throws MathIllegalArgumentException if {@code coefficients} is empty.
- * @throws NullArgumentException if {@code coefficients} is {@code null}.
- * @since 1.3
- */
- @Override
- public <T extends CalculusFieldElement<T>> T value(final T t)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(coefficients);
- int n = coefficients.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- T result = t.getField().getZero().add(coefficients[n - 1]);
- for (int j = n - 2; j >= 0; j--) {
- result = result.multiply(t).add(coefficients[j]);
- }
- return result;
- }
- /**
- * Add a polynomial to the instance.
- *
- * @param p Polynomial to add.
- * @return a new polynomial which is the sum of the instance and {@code p}.
- */
- public PolynomialFunction add(final PolynomialFunction p) {
- // identify the lowest degree polynomial
- final int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
- final int highLength = FastMath.max(coefficients.length, p.coefficients.length);
- // build the coefficients array
- double[] newCoefficients = new double[highLength];
- for (int i = 0; i < lowLength; ++i) {
- newCoefficients[i] = coefficients[i] + p.coefficients[i];
- }
- System.arraycopy((coefficients.length < p.coefficients.length) ?
- p.coefficients : coefficients,
- lowLength,
- newCoefficients, lowLength,
- highLength - lowLength);
- return new PolynomialFunction(newCoefficients);
- }
- /**
- * Subtract a polynomial from the instance.
- *
- * @param p Polynomial to subtract.
- * @return a new polynomial which is the instance minus {@code p}.
- */
- public PolynomialFunction subtract(final PolynomialFunction p) {
- // identify the lowest degree polynomial
- int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
- int highLength = FastMath.max(coefficients.length, p.coefficients.length);
- // build the coefficients array
- double[] newCoefficients = new double[highLength];
- for (int i = 0; i < lowLength; ++i) {
- newCoefficients[i] = coefficients[i] - p.coefficients[i];
- }
- if (coefficients.length < p.coefficients.length) {
- for (int i = lowLength; i < highLength; ++i) {
- newCoefficients[i] = -p.coefficients[i];
- }
- } else {
- System.arraycopy(coefficients, lowLength, newCoefficients, lowLength,
- highLength - lowLength);
- }
- return new PolynomialFunction(newCoefficients);
- }
- /**
- * Negate the instance.
- *
- * @return a new polynomial with all coefficients negated
- */
- public PolynomialFunction negate() {
- double[] newCoefficients = new double[coefficients.length];
- for (int i = 0; i < coefficients.length; ++i) {
- newCoefficients[i] = -coefficients[i];
- }
- return new PolynomialFunction(newCoefficients);
- }
- /**
- * Multiply the instance by a polynomial.
- *
- * @param p Polynomial to multiply by.
- * @return a new polynomial equal to this times {@code p}
- */
- public PolynomialFunction multiply(final PolynomialFunction p) {
- double[] newCoefficients = new double[coefficients.length + p.coefficients.length - 1];
- for (int i = 0; i < newCoefficients.length; ++i) {
- newCoefficients[i] = 0.0;
- for (int j = FastMath.max(0, i + 1 - p.coefficients.length);
- j < FastMath.min(coefficients.length, i + 1);
- ++j) {
- newCoefficients[i] += coefficients[j] * p.coefficients[i-j];
- }
- }
- return new PolynomialFunction(newCoefficients);
- }
- /**
- * Returns the coefficients of the derivative of the polynomial with the given coefficients.
- *
- * @param coefficients Coefficients of the polynomial to differentiate.
- * @return the coefficients of the derivative or {@code null} if coefficients has length 1.
- * @throws MathIllegalArgumentException if {@code coefficients} is empty.
- * @throws NullArgumentException if {@code coefficients} is {@code null}.
- */
- protected static double[] differentiate(double[] coefficients)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(coefficients);
- int n = coefficients.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- if (n == 1) {
- return new double[]{0};
- }
- double[] result = new double[n - 1];
- for (int i = n - 1; i > 0; i--) {
- result[i - 1] = i * coefficients[i];
- }
- return result;
- }
- /**
- * Returns an anti-derivative of this polynomial, with 0 constant term.
- *
- * @return a polynomial whose derivative has the same coefficients as this polynomial
- */
- public PolynomialFunction antiDerivative() {
- final int d = degree();
- final double[] anti = new double[d + 2];
- anti[0] = 0d;
- for (int i = 1; i <= d + 1; i++) {
- anti[i] = coefficients[i - 1] / i;
- }
- return new PolynomialFunction(anti);
- }
- /**
- * Returns the definite integral of this polymomial over the given interval.
- * <p>
- * [lower, upper] must describe a finite interval (neither can be infinite
- * and lower must be less than or equal to upper).
- *
- * @param lower lower bound for the integration
- * @param upper upper bound for the integration
- * @return the integral of this polymomial over the given interval
- * @throws MathIllegalArgumentException if the bounds do not describe a finite interval
- */
- public double integrate(final double lower, final double upper) {
- if (Double.isInfinite(lower) || Double.isInfinite(upper)) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INFINITE_BOUND);
- }
- if (lower > upper) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND);
- }
- final PolynomialFunction anti = antiDerivative();
- return anti.value(upper) - anti.value(lower);
- }
- /**
- * Returns the derivative as a {@link PolynomialFunction}.
- *
- * @return the derivative polynomial.
- */
- public PolynomialFunction polynomialDerivative() {
- return new PolynomialFunction(differentiate(coefficients));
- }
- /**
- * Returns a string representation of the polynomial.
- *
- * <p>The representation is user oriented. Terms are displayed lowest
- * degrees first. The multiplications signs, coefficients equals to
- * one and null terms are not displayed (except if the polynomial is 0,
- * in which case the 0 constant term is displayed). Addition of terms
- * with negative coefficients are replaced by subtraction of terms
- * with positive coefficients except for the first displayed term
- * (i.e. we display <code>-3</code> for a constant negative polynomial,
- * but <code>1 - 3 x + x^2</code> if the negative coefficient is not
- * the first one displayed).</p>
- *
- * @return a string representation of the polynomial.
- */
- @Override
- public String toString() {
- StringBuilder s = new StringBuilder();
- if (coefficients[0] == 0.0) {
- if (coefficients.length == 1) {
- return "0";
- }
- } else {
- s.append(toString(coefficients[0]));
- }
- for (int i = 1; i < coefficients.length; ++i) {
- if (coefficients[i] != 0) {
- if (s.length() > 0) {
- if (coefficients[i] < 0) {
- s.append(" - ");
- } else {
- s.append(" + ");
- }
- } else {
- if (coefficients[i] < 0) {
- s.append('-');
- }
- }
- double absAi = FastMath.abs(coefficients[i]);
- if ((absAi - 1) != 0) {
- s.append(toString(absAi)).append(' ');
- }
- s.append('x');
- if (i > 1) {
- s.append('^').append(i);
- }
- }
- }
- return s.toString();
- }
- /**
- * Creates a string representing a coefficient, removing ".0" endings.
- *
- * @param coeff Coefficient.
- * @return a string representation of {@code coeff}.
- */
- private static String toString(double coeff) {
- final String c = Double.toString(coeff);
- if (c.endsWith(".0")) {
- return c.substring(0, c.length() - 2);
- } else {
- return c;
- }
- }
- /** {@inheritDoc} */
- @Override
- public int hashCode() {
- final int prime = 31;
- int result = 1;
- result = prime * result + Arrays.hashCode(coefficients);
- return result;
- }
- /** {@inheritDoc} */
- @Override
- public boolean equals(Object obj) {
- if (this == obj) {
- return true;
- }
- if (!(obj instanceof PolynomialFunction)) {
- return false;
- }
- PolynomialFunction other = (PolynomialFunction) obj;
- return Arrays.equals(coefficients, other.coefficients);
- }
- /**
- * Dedicated parametric polynomial class.
- *
- */
- public static class Parametric implements ParametricUnivariateFunction {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public Parametric() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /** {@inheritDoc} */
- @Override
- public double[] gradient(double x, double ... parameters) {
- final double[] gradient = new double[parameters.length];
- double xn = 1.0;
- for (int i = 0; i < parameters.length; ++i) {
- gradient[i] = xn;
- xn *= x;
- }
- return gradient;
- }
- /** {@inheritDoc} */
- @Override
- public double value(final double x, final double ... parameters)
- throws MathIllegalArgumentException {
- return evaluate(parameters, x);
- }
- }
- }