FieldPolynomialFunctionLagrangeForm.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.analysis.polynomials;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.CalculusFieldUnivariateFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /**
- * Implements the representation of a real polynomial function in
- * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
- * Lagrange Form</a>. For reference, see <b>Introduction to Numerical
- * Analysis</b>, ISBN 038795452X, chapter 2.
- * <p>
- * The approximated function should be smooth enough for Lagrange polynomial
- * to work well. Otherwise, consider using splines instead.</p>
- * @see PolynomialFunctionLagrangeForm
- * @since 4.0
- * @param <T> type of the field elements
- */
- public class FieldPolynomialFunctionLagrangeForm<T extends CalculusFieldElement<T>>
- implements CalculusFieldUnivariateFunction<T> {
- /**
- * The coefficients of the polynomial, ordered by degree -- i.e.
- * coefficients[0] is the constant term and coefficients[n] is the
- * coefficient of x^n where n is the degree of the polynomial.
- */
- private T[] coefficients;
- /**
- * Interpolating points (abscissas).
- */
- private final T[] x;
- /**
- * Function values at interpolating points.
- */
- private final T[] y;
- /**
- * Whether the polynomial coefficients are available.
- */
- private boolean coefficientsComputed;
- /**
- * Construct a Lagrange polynomial with the given abscissas and function
- * values. The order of interpolating points is important.
- * <p>
- * The constructor makes copy of the input arrays and assigns them.</p>
- *
- * @param x interpolating points
- * @param y function values at interpolating points
- * @throws MathIllegalArgumentException if the array lengths are different.
- * @throws MathIllegalArgumentException if the number of points is less than 2.
- * @throws MathIllegalArgumentException if two abscissae have the same value.
- * @throws MathIllegalArgumentException if the abscissae are not sorted.
- */
- public FieldPolynomialFunctionLagrangeForm(final T[] x, final T[] y)
- throws MathIllegalArgumentException {
- this.x = x.clone();
- this.y = y.clone();
- coefficientsComputed = false;
- MathArrays.checkEqualLength(x, y);
- if (x.length < 2) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true);
- }
- MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, true);
- }
- /**
- * Calculate the function value at the given point.
- *
- * @param z Point at which the function value is to be computed.
- * @return the function value.
- * @throws MathIllegalArgumentException if {@code x} and {@code y} have
- * different lengths.
- * @throws MathIllegalArgumentException
- * if {@code x} is not sorted in strictly increasing order.
- * @throws MathIllegalArgumentException if the size of {@code x} is less
- * than 2.
- */
- @Override
- public T value(final T z) {
- int nearest = 0;
- final int n = x.length;
- final T[] c = y.clone();
- final T[] d = c.clone();
- double minDist = Double.POSITIVE_INFINITY;
- for (int i = 0; i < n; i++) {
- // find out the abscissa closest to z
- final double dist = FastMath.abs(z.subtract(x[i])).getReal();
- if (dist < minDist) {
- nearest = i;
- minDist = dist;
- }
- }
- // initial approximation to the function value at z
- T value = y[nearest];
- for (int i = 1; i < n; i++) {
- for (int j = 0; j < n-i; j++) {
- final T tc = x[j].subtract(z);
- final T td = x[i+j].subtract(z);
- final T divider = x[j].subtract(x[i+j]);
- // update the difference arrays
- final T w = (c[j+1].subtract(d[j])).divide(divider);
- c[j] = tc.multiply(w);
- d[j] = td.multiply(w);
- }
- // sum up the difference terms to get the final value
- if (nearest < 0.5*(n-i+1)) {
- value = value.add(c[nearest]); // fork down
- } else {
- nearest--;
- value = value.add(d[nearest]); // fork up
- }
- }
- return value;
- }
- /**
- * Returns the degree of the polynomial.
- *
- * @return the degree of the polynomial
- */
- public int degree() {
- return x.length - 1;
- }
- /**
- * Returns a copy of the interpolating points array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- *
- * @return a fresh copy of the interpolating points array
- */
- public T[] getInterpolatingPoints() {
- return x.clone();
- }
- /**
- * Returns a copy of the interpolating values array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- *
- * @return a fresh copy of the interpolating values array
- */
- public T[] getInterpolatingValues() {
- return y.clone();
- }
- /**
- * Returns a copy of the coefficients array.
- * <p>
- * Changes made to the returned copy will not affect the polynomial.</p>
- * <p>
- * Note that coefficients computation can be ill-conditioned. Use with caution
- * and only when it is necessary.</p>
- *
- * @return a fresh copy of the coefficients array
- */
- public T[] getCoefficients() {
- if (!coefficientsComputed) {
- computeCoefficients();
- }
- return coefficients.clone();
- }
- /**
- * Calculate the coefficients of Lagrange polynomial from the
- * interpolation data. It takes O(n^2) time.
- * Note that this computation can be ill-conditioned: Use with caution
- * and only when it is necessary.
- */
- protected void computeCoefficients() {
- final int n = degree() + 1;
- final Field<T> field = x[0].getField();
- coefficients = MathArrays.buildArray(field, n);
- // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
- final T[] c = MathArrays.buildArray(field, n + 1);
- c[0] = field.getOne();
- for (int i = 0; i < n; i++) {
- for (int j = i; j > 0; j--) {
- c[j] = c[j-1].subtract(c[j].multiply(x[i]));
- }
- c[0] = c[0].multiply(x[i].negate());
- c[i+1] = field.getOne();
- }
- final T[] tc = MathArrays.buildArray(field, n);
- for (int i = 0; i < n; i++) {
- // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
- T d = field.getOne();
- for (int j = 0; j < n; j++) {
- if (i != j) {
- d = d.multiply(x[i].subtract(x[j]));
- }
- }
- final T t = y[i].divide(d);
- // Lagrange polynomial is the sum of n terms, each of which is a
- // polynomial of degree n-1. tc[] are the coefficients of the i-th
- // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
- tc[n-1] = c[n]; // actually c[n] = 1
- coefficients[n-1] = coefficients[n-1].add(t.multiply(tc[n-1]));
- for (int j = n-2; j >= 0; j--) {
- tc[j] = c[j+1].add(tc[j+1].multiply(x[i]));
- coefficients[j] = coefficients[j].add(t.multiply(tc[j]));
- }
- }
- coefficientsComputed = true;
- }
- }