FieldPolynomialFunction.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.analysis.polynomials;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.CalculusFieldUnivariateFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- /**
- * Immutable representation of a real polynomial function with real coefficients.
- * <p>
- * <a href="http://mathworld.wolfram.com/HornersMethod.html">Horner's Method</a>
- * is used to evaluate the function.</p>
- * @param <T> the type of the field elements
- * @since 1.5
- *
- */
- public class FieldPolynomialFunction<T extends CalculusFieldElement<T>> implements CalculusFieldUnivariateFunction<T> {
- /**
- * The coefficients of the polynomial, ordered by degree -- i.e.,
- * coefficients[0] is the constant term and coefficients[n] is the
- * coefficient of x^n where n is the degree of the polynomial.
- */
- private final T[] coefficients;
- /**
- * Construct a polynomial with the given coefficients. The first element
- * of the coefficients array is the constant term. Higher degree
- * coefficients follow in sequence. The degree of the resulting polynomial
- * is the index of the last non-null element of the array, or 0 if all elements
- * are null.
- * <p>
- * The constructor makes a copy of the input array and assigns the copy to
- * the coefficients property.</p>
- *
- * @param c Polynomial coefficients.
- * @throws NullArgumentException if {@code c} is {@code null}.
- * @throws MathIllegalArgumentException if {@code c} is empty.
- */
- public FieldPolynomialFunction(final T[] c)
- throws MathIllegalArgumentException, NullArgumentException {
- super();
- MathUtils.checkNotNull(c);
- int n = c.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- while ((n > 1) && (c[n - 1].isZero())) {
- --n;
- }
- this.coefficients = MathArrays.buildArray(c[0].getField(), n);
- System.arraycopy(c, 0, this.coefficients, 0, n);
- }
- /**
- * Compute the value of the function for the given argument.
- * <p>
- * The value returned is </p><p>
- * {@code coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]}
- * </p>
- *
- * @param x Argument for which the function value should be computed.
- * @return the value of the polynomial at the given point.
- *
- * @see org.hipparchus.analysis.UnivariateFunction#value(double)
- */
- public T value(double x) {
- return evaluate(coefficients, getField().getZero().add(x));
- }
- /**
- * Compute the value of the function for the given argument.
- * <p>
- * The value returned is </p><p>
- * {@code coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]}
- * </p>
- *
- * @param x Argument for which the function value should be computed.
- * @return the value of the polynomial at the given point.
- *
- * @see org.hipparchus.analysis.UnivariateFunction#value(double)
- */
- @Override
- public T value(T x) {
- return evaluate(coefficients, x);
- }
- /** Get the {@link Field} to which the instance belongs.
- * @return {@link Field} to which the instance belongs
- */
- public Field<T> getField() {
- return coefficients[0].getField();
- }
- /**
- * Returns the degree of the polynomial.
- *
- * @return the degree of the polynomial.
- */
- public int degree() {
- return coefficients.length - 1;
- }
- /**
- * Returns a copy of the coefficients array.
- * <p>
- * Changes made to the returned copy will not affect the coefficients of
- * the polynomial.</p>
- *
- * @return a fresh copy of the coefficients array.
- */
- public T[] getCoefficients() {
- return coefficients.clone();
- }
- /**
- * Uses Horner's Method to evaluate the polynomial with the given coefficients at
- * the argument.
- *
- * @param coefficients Coefficients of the polynomial to evaluate.
- * @param argument Input value.
- * @param <T> the type of the field elements
- * @return the value of the polynomial.
- * @throws MathIllegalArgumentException if {@code coefficients} is empty.
- * @throws NullArgumentException if {@code coefficients} is {@code null}.
- */
- protected static <T extends CalculusFieldElement<T>> T evaluate(T[] coefficients, T argument)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(coefficients);
- int n = coefficients.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- T result = coefficients[n - 1];
- for (int j = n - 2; j >= 0; j--) {
- result = argument.multiply(result).add(coefficients[j]);
- }
- return result;
- }
- /**
- * Add a polynomial to the instance.
- *
- * @param p Polynomial to add.
- * @return a new polynomial which is the sum of the instance and {@code p}.
- */
- public FieldPolynomialFunction<T> add(final FieldPolynomialFunction<T> p) {
- // identify the lowest degree polynomial
- final int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
- final int highLength = FastMath.max(coefficients.length, p.coefficients.length);
- // build the coefficients array
- T[] newCoefficients = MathArrays.buildArray(getField(), highLength);
- for (int i = 0; i < lowLength; ++i) {
- newCoefficients[i] = coefficients[i].add(p.coefficients[i]);
- }
- System.arraycopy((coefficients.length < p.coefficients.length) ?
- p.coefficients : coefficients,
- lowLength,
- newCoefficients, lowLength,
- highLength - lowLength);
- return new FieldPolynomialFunction<>(newCoefficients);
- }
- /**
- * Subtract a polynomial from the instance.
- *
- * @param p Polynomial to subtract.
- * @return a new polynomial which is the instance minus {@code p}.
- */
- public FieldPolynomialFunction<T> subtract(final FieldPolynomialFunction<T> p) {
- // identify the lowest degree polynomial
- int lowLength = FastMath.min(coefficients.length, p.coefficients.length);
- int highLength = FastMath.max(coefficients.length, p.coefficients.length);
- // build the coefficients array
- T[] newCoefficients = MathArrays.buildArray(getField(), highLength);
- for (int i = 0; i < lowLength; ++i) {
- newCoefficients[i] = coefficients[i].subtract(p.coefficients[i]);
- }
- if (coefficients.length < p.coefficients.length) {
- for (int i = lowLength; i < highLength; ++i) {
- newCoefficients[i] = p.coefficients[i].negate();
- }
- } else {
- System.arraycopy(coefficients, lowLength, newCoefficients, lowLength,
- highLength - lowLength);
- }
- return new FieldPolynomialFunction<>(newCoefficients);
- }
- /**
- * Negate the instance.
- *
- * @return a new polynomial with all coefficients negated
- */
- public FieldPolynomialFunction<T> negate() {
- final T[] newCoefficients = MathArrays.buildArray(getField(), coefficients.length);
- for (int i = 0; i < coefficients.length; ++i) {
- newCoefficients[i] = coefficients[i].negate();
- }
- return new FieldPolynomialFunction<>(newCoefficients);
- }
- /**
- * Multiply the instance by a polynomial.
- *
- * @param p Polynomial to multiply by.
- * @return a new polynomial equal to this times {@code p}
- */
- public FieldPolynomialFunction<T> multiply(final FieldPolynomialFunction<T> p) {
- final Field<T> field = getField();
- final T[] newCoefficients = MathArrays.buildArray(field, coefficients.length + p.coefficients.length - 1);
- for (int i = 0; i < newCoefficients.length; ++i) {
- newCoefficients[i] = field.getZero();
- for (int j = FastMath.max(0, i + 1 - p.coefficients.length);
- j < FastMath.min(coefficients.length, i + 1);
- ++j) {
- newCoefficients[i] = newCoefficients[i].add(coefficients[j].multiply(p.coefficients[i-j]));
- }
- }
- return new FieldPolynomialFunction<>(newCoefficients);
- }
- /**
- * Returns the coefficients of the derivative of the polynomial with the given coefficients.
- *
- * @param coefficients Coefficients of the polynomial to differentiate.
- * @param <T> the type of the field elements
- * @return the coefficients of the derivative or {@code null} if coefficients has length 1.
- * @throws MathIllegalArgumentException if {@code coefficients} is empty.
- * @throws NullArgumentException if {@code coefficients} is {@code null}.
- */
- protected static <T extends CalculusFieldElement<T>> T[] differentiate(T[] coefficients)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(coefficients);
- int n = coefficients.length;
- if (n == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY);
- }
- final Field<T> field = coefficients[0].getField();
- final T[] result = MathArrays.buildArray(field, FastMath.max(1, n - 1));
- if (n == 1) {
- result[0] = field.getZero();
- } else {
- for (int i = n - 1; i > 0; i--) {
- result[i - 1] = coefficients[i].multiply(i);
- }
- }
- return result;
- }
- /**
- * Returns an anti-derivative of this polynomial, with 0 constant term.
- *
- * @return a polynomial whose derivative has the same coefficients as this polynomial
- */
- public FieldPolynomialFunction<T> antiDerivative() {
- final Field<T> field = getField();
- final int d = degree();
- final T[] anti = MathArrays.buildArray(field, d + 2);
- anti[0] = field.getZero();
- for (int i = 1; i <= d + 1; i++) {
- anti[i] = coefficients[i - 1].multiply(1.0 / i);
- }
- return new FieldPolynomialFunction<>(anti);
- }
- /**
- * Returns the definite integral of this polymomial over the given interval.
- * <p>
- * [lower, upper] must describe a finite interval (neither can be infinite
- * and lower must be less than or equal to upper).
- *
- * @param lower lower bound for the integration
- * @param upper upper bound for the integration
- * @return the integral of this polymomial over the given interval
- * @throws MathIllegalArgumentException if the bounds do not describe a finite interval
- */
- public T integrate(final double lower, final double upper) {
- final T zero = getField().getZero();
- return integrate(zero.add(lower), zero.add(upper));
- }
- /**
- * Returns the definite integral of this polymomial over the given interval.
- * <p>
- * [lower, upper] must describe a finite interval (neither can be infinite
- * and lower must be less than or equal to upper).
- *
- * @param lower lower bound for the integration
- * @param upper upper bound for the integration
- * @return the integral of this polymomial over the given interval
- * @throws MathIllegalArgumentException if the bounds do not describe a finite interval
- */
- public T integrate(final T lower, final T upper) {
- if (Double.isInfinite(lower.getReal()) || Double.isInfinite(upper.getReal())) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INFINITE_BOUND);
- }
- if (lower.getReal() > upper.getReal()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND);
- }
- final FieldPolynomialFunction<T> anti = antiDerivative();
- return anti.value(upper).subtract(anti.value(lower));
- }
- /**
- * Returns the derivative as a {@link FieldPolynomialFunction}.
- *
- * @return the derivative polynomial.
- */
- public FieldPolynomialFunction<T> polynomialDerivative() {
- return new FieldPolynomialFunction<>(differentiate(coefficients));
- }
- }