SplineInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.interpolation;
- import java.lang.reflect.Array;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.polynomials.FieldPolynomialFunction;
- import org.hipparchus.analysis.polynomials.FieldPolynomialSplineFunction;
- import org.hipparchus.analysis.polynomials.PolynomialFunction;
- import org.hipparchus.analysis.polynomials.PolynomialSplineFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- /**
- * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.
- * <p>
- * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
- * consisting of n cubic polynomials, defined over the subintervals determined by the x values,
- * {@code x[0] < x[i] ... < x[n].} The x values are referred to as "knot points."</p>
- * <p>
- * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest
- * knot point and strictly less than the largest knot point is computed by finding the subinterval to which
- * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where
- * <code>i</code> is the index of the subinterval. See {@link PolynomialSplineFunction} for more details.
- * </p>
- * <p>
- * The interpolating polynomials satisfy:
- * </p>
- * <ol>
- * <li>The value of the PolynomialSplineFunction at each of the input x values equals the
- * corresponding y value.</li>
- * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials
- * "match up" at the knot points, as do their first and second derivatives).</li>
- * </ol>
- * <p>
- * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
- * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
- * </p>
- *
- */
- public class SplineInterpolator implements UnivariateInterpolator, FieldUnivariateInterpolator {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public SplineInterpolator() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /**
- * Computes an interpolating function for the data set.
- * @param x the arguments for the interpolation points
- * @param y the values for the interpolation points
- * @return a function which interpolates the data set
- * @throws MathIllegalArgumentException if {@code x} and {@code y}
- * have different sizes.
- * @throws MathIllegalArgumentException if {@code x} is not sorted in
- * strict increasing order.
- * @throws MathIllegalArgumentException if the size of {@code x} is smaller
- * than 3.
- */
- @Override
- public PolynomialSplineFunction interpolate(double[] x, double[] y)
- throws MathIllegalArgumentException {
- MathUtils.checkNotNull(x);
- MathUtils.checkNotNull(y);
- MathArrays.checkEqualLength(x, y);
- if (x.length < 3) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS,
- x.length, 3, true);
- }
- // Number of intervals. The number of data points is n + 1.
- final int n = x.length - 1;
- MathArrays.checkOrder(x);
- // Differences between knot points
- final double[] h = new double[n];
- for (int i = 0; i < n; i++) {
- h[i] = x[i + 1] - x[i];
- }
- final double[] mu = new double[n];
- final double[] z = new double[n + 1];
- mu[0] = 0d;
- z[0] = 0d;
- double g;
- for (int i = 1; i < n; i++) {
- g = 2d * (x[i+1] - x[i - 1]) - h[i - 1] * mu[i -1];
- mu[i] = h[i] / g;
- z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) /
- (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g;
- }
- // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants)
- final double[] b = new double[n];
- final double[] c = new double[n + 1];
- final double[] d = new double[n];
- z[n] = 0d;
- c[n] = 0d;
- for (int j = n -1; j >=0; j--) {
- c[j] = z[j] - mu[j] * c[j + 1];
- b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d;
- d[j] = (c[j + 1] - c[j]) / (3d * h[j]);
- }
- final PolynomialFunction[] polynomials = new PolynomialFunction[n];
- final double[] coefficients = new double[4];
- for (int i = 0; i < n; i++) {
- coefficients[0] = y[i];
- coefficients[1] = b[i];
- coefficients[2] = c[i];
- coefficients[3] = d[i];
- polynomials[i] = new PolynomialFunction(coefficients);
- }
- return new PolynomialSplineFunction(x, polynomials);
- }
- /**
- * Computes an interpolating function for the data set.
- * @param x the arguments for the interpolation points
- * @param y the values for the interpolation points
- * @param <T> the type of the field elements
- * @return a function which interpolates the data set
- * @throws MathIllegalArgumentException if {@code x} and {@code y}
- * have different sizes.
- * @throws MathIllegalArgumentException if {@code x} is not sorted in
- * strict increasing order.
- * @throws MathIllegalArgumentException if the size of {@code x} is smaller
- * than 3.
- * @since 1.5
- */
- @Override
- public <T extends CalculusFieldElement<T>> FieldPolynomialSplineFunction<T> interpolate(
- T[] x, T[] y)
- throws MathIllegalArgumentException {
- MathUtils.checkNotNull(x);
- MathUtils.checkNotNull(y);
- MathArrays.checkEqualLength(x, y);
- if (x.length < 3) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS,
- x.length, 3, true);
- }
- // Number of intervals. The number of data points is n + 1.
- final int n = x.length - 1;
- MathArrays.checkOrder(x);
- // Differences between knot points
- final Field<T> field = x[0].getField();
- final T[] h = MathArrays.buildArray(field, n);
- for (int i = 0; i < n; i++) {
- h[i] = x[i + 1].subtract(x[i]);
- }
- final T[] mu = MathArrays.buildArray(field, n);
- final T[] z = MathArrays.buildArray(field, n + 1);
- mu[0] = field.getZero();
- z[0] = field.getZero();
- for (int i = 1; i < n; i++) {
- final T g = x[i+1].subtract(x[i - 1]).multiply(2).subtract(h[i - 1].multiply(mu[i -1]));
- mu[i] = h[i].divide(g);
- z[i] = y[i + 1].multiply(h[i - 1]).
- subtract(y[i].multiply(x[i + 1].subtract(x[i - 1]))).
- add(y[i - 1].multiply(h[i])).
- multiply(3).
- divide(h[i - 1].multiply(h[i])).
- subtract(h[i - 1].multiply(z[i - 1])).
- divide(g);
- }
- // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants)
- final T[] b = MathArrays.buildArray(field, n);
- final T[] c = MathArrays.buildArray(field, n + 1);
- final T[] d = MathArrays.buildArray(field, n);
- z[n] = field.getZero();
- c[n] = field.getZero();
- for (int j = n -1; j >=0; j--) {
- c[j] = z[j].subtract(mu[j].multiply(c[j + 1]));
- b[j] = y[j + 1].subtract(y[j]).divide(h[j]).
- subtract(h[j].multiply(c[j + 1].add(c[j]).add(c[j])).divide(3));
- d[j] = c[j + 1].subtract(c[j]).divide(h[j].multiply(3));
- }
- @SuppressWarnings("unchecked")
- final FieldPolynomialFunction<T>[] polynomials =
- (FieldPolynomialFunction<T>[]) Array.newInstance(FieldPolynomialFunction.class, n);
- final T[] coefficients = MathArrays.buildArray(field, 4);
- for (int i = 0; i < n; i++) {
- coefficients[0] = y[i];
- coefficients[1] = b[i];
- coefficients[2] = c[i];
- coefficients[3] = d[i];
- polynomials[i] = new FieldPolynomialFunction<>(coefficients);
- }
- return new FieldPolynomialSplineFunction<>(x, polynomials);
- }
- }