HermiteInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.interpolation;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableVectorFunction;
- import org.hipparchus.analysis.polynomials.PolynomialFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.CombinatoricsUtils;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- /** Polynomial interpolator using both sample values and sample derivatives.
- * <p>
- * The interpolation polynomials match all sample points, including both values
- * and provided derivatives. There is one polynomial for each component of
- * the values vector. All polynomials have the same degree. The degree of the
- * polynomials depends on the number of points and number of derivatives at each
- * point. For example the interpolation polynomials for n sample points without
- * any derivatives all have degree n-1. The interpolation polynomials for n
- * sample points with the two extreme points having value and first derivative
- * and the remaining points having value only all have degree n+1. The
- * interpolation polynomial for n sample points with value, first and second
- * derivative for all points all have degree 3n-1.
- * </p>
- *
- */
- public class HermiteInterpolator implements UnivariateDifferentiableVectorFunction {
- /** Sample abscissae. */
- private final List<Double> abscissae;
- /** Top diagonal of the divided differences array. */
- private final List<double[]> topDiagonal;
- /** Bottom diagonal of the divided differences array. */
- private final List<double[]> bottomDiagonal;
- /** Create an empty interpolator.
- */
- public HermiteInterpolator() {
- this.abscissae = new ArrayList<>();
- this.topDiagonal = new ArrayList<>();
- this.bottomDiagonal = new ArrayList<>();
- }
- /** Add a sample point.
- * <p>
- * This method must be called once for each sample point. It is allowed to
- * mix some calls with values only with calls with values and first
- * derivatives.
- * </p>
- * <p>
- * The point abscissae for all calls <em>must</em> be different.
- * </p>
- * @param x abscissa of the sample point
- * @param value value and derivatives of the sample point
- * (if only one row is passed, it is the value, if two rows are
- * passed the first one is the value and the second the derivative
- * and so on)
- * @exception MathIllegalArgumentException if the abscissa difference between added point
- * and a previous point is zero (i.e. the two points are at same abscissa)
- * @exception MathRuntimeException if the number of derivatives is larger
- * than 20, which prevents computation of a factorial
- */
- public void addSamplePoint(final double x, final double[] ... value)
- throws MathRuntimeException {
- for (int i = 0; i < value.length; ++i) {
- final double[] y = value[i].clone();
- if (i > 1) {
- double inv = 1.0 / CombinatoricsUtils.factorial(i);
- for (int j = 0; j < y.length; ++j) {
- y[j] *= inv;
- }
- }
- // update the bottom diagonal of the divided differences array
- final int n = abscissae.size();
- bottomDiagonal.add(n - i, y);
- double[] bottom0 = y;
- for (int j = i; j < n; ++j) {
- final double[] bottom1 = bottomDiagonal.get(n - (j + 1));
- final double inv = 1.0 / (x - abscissae.get(n - (j + 1)));
- if (Double.isInfinite(inv)) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DUPLICATED_ABSCISSA_DIVISION_BY_ZERO, x);
- }
- for (int k = 0; k < y.length; ++k) {
- bottom1[k] = inv * (bottom0[k] - bottom1[k]);
- }
- bottom0 = bottom1;
- }
- // update the top diagonal of the divided differences array
- topDiagonal.add(bottom0.clone());
- // update the abscissae array
- abscissae.add(x);
- }
- }
- /** Compute the interpolation polynomials.
- * @return interpolation polynomials array
- * @exception MathIllegalArgumentException if sample is empty
- */
- public PolynomialFunction[] getPolynomials()
- throws MathIllegalArgumentException {
- // safety check
- checkInterpolation();
- // iteration initialization
- final PolynomialFunction zero = polynomial(0);
- PolynomialFunction[] polynomials = new PolynomialFunction[topDiagonal.get(0).length];
- for (int i = 0; i < polynomials.length; ++i) {
- polynomials[i] = zero;
- }
- PolynomialFunction coeff = polynomial(1);
- // build the polynomials by iterating on the top diagonal of the divided differences array
- for (int i = 0; i < topDiagonal.size(); ++i) {
- double[] tdi = topDiagonal.get(i);
- for (int k = 0; k < polynomials.length; ++k) {
- polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
- }
- coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
- }
- return polynomials;
- }
- /** Interpolate value at a specified abscissa.
- * <p>
- * Calling this method is equivalent to call the {@link PolynomialFunction#value(double)
- * value} methods of all polynomials returned by {@link #getPolynomials() getPolynomials},
- * except it does not build the intermediate polynomials, so this method is faster and
- * numerically more stable.
- * </p>
- * @param x interpolation abscissa
- * @return interpolated value
- * @exception MathIllegalArgumentException if sample is empty
- */
- @Override
- public double[] value(double x) throws MathIllegalArgumentException {
- // safety check
- checkInterpolation();
- final double[] value = new double[topDiagonal.get(0).length];
- double valueCoeff = 1;
- for (int i = 0; i < topDiagonal.size(); ++i) {
- double[] dividedDifference = topDiagonal.get(i);
- for (int k = 0; k < value.length; ++k) {
- value[k] += dividedDifference[k] * valueCoeff;
- }
- final double deltaX = x - abscissae.get(i);
- valueCoeff *= deltaX;
- }
- return value;
- }
- /** {@inheritDoc}. */
- @Override
- public <T extends Derivative<T>> T[] value(T x)
- throws MathIllegalArgumentException {
- // safety check
- checkInterpolation();
- final T[] value = MathArrays.buildArray(x.getField(), topDiagonal.get(0).length);
- Arrays.fill(value, x.getField().getZero());
- T valueCoeff = x.getField().getOne();
- for (int i = 0; i < topDiagonal.size(); ++i) {
- double[] dividedDifference = topDiagonal.get(i);
- for (int k = 0; k < value.length; ++k) {
- value[k] = value[k].add(valueCoeff.multiply(dividedDifference[k]));
- }
- final T deltaX = x.subtract(abscissae.get(i));
- valueCoeff = valueCoeff.multiply(deltaX);
- }
- return value;
- }
- /** Interpolate value and first derivatives at a specified abscissa.
- * @param x interpolation abscissa
- * @param order maximum derivation order
- * @return interpolated value and derivatives (value in row 0,
- * 1<sup>st</sup> derivative in row 1, ... n<sup>th</sup> derivative in row n)
- * @exception MathIllegalArgumentException if sample is empty
- * @throws NullArgumentException if x is null
- */
- public double[][] derivatives(double x, int order)
- throws MathIllegalArgumentException, NullArgumentException {
- // safety check
- MathUtils.checkNotNull(x);
- if (abscissae.isEmpty()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_INTERPOLATION_SAMPLE);
- }
- final double[] tj = new double[order + 1];
- tj[0] = 0.0;
- for (int i = 0; i < order; ++i) {
- tj[i + 1] = tj[i] + 1;
- }
- final double[][] derivatives = new double[order + 1][topDiagonal.get(0).length];
- final double[] valueCoeff = new double[order + 1];
- valueCoeff[0] = 1.0;
- for (int i = 0; i < topDiagonal.size(); ++i) {
- double[] dividedDifference = topDiagonal.get(i);
- final double deltaX = x - abscissae.get(i);
- for (int j = order; j >= 0; --j) {
- for (int k = 0; k < derivatives[j].length; ++k) {
- derivatives[j][k] += dividedDifference[k] * valueCoeff[j];
- }
- valueCoeff[j] *= deltaX;
- if (j > 0) {
- valueCoeff[j] += tj[j] * valueCoeff[j - 1];
- }
- }
- }
- return derivatives;
- }
- /** Check interpolation can be performed.
- * @exception MathIllegalArgumentException if interpolation cannot be performed
- * because sample is empty
- */
- private void checkInterpolation() throws MathIllegalArgumentException {
- if (abscissae.isEmpty()) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.EMPTY_INTERPOLATION_SAMPLE);
- }
- }
- /** Create a polynomial from its coefficients.
- * @param c polynomials coefficients
- * @return polynomial
- */
- private PolynomialFunction polynomial(double ... c) {
- return new PolynomialFunction(c);
- }
- }