AkimaSplineInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.interpolation;
- import java.lang.reflect.Array;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.analysis.polynomials.FieldPolynomialFunction;
- import org.hipparchus.analysis.polynomials.FieldPolynomialSplineFunction;
- import org.hipparchus.analysis.polynomials.PolynomialFunction;
- import org.hipparchus.analysis.polynomials.PolynomialSplineFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.Precision;
- /**
- * Computes a cubic spline interpolation for the data set using the Akima
- * algorithm, as originally formulated by Hiroshi Akima in his 1970 paper
- * <a href="http://doi.acm.org/10.1145/321607.321609">A New Method of
- * Interpolation and Smooth Curve Fitting Based on Local Procedures.</a>
- * J. ACM 17, 4 (October 1970), 589-602. DOI=10.1145/321607.321609
- * <p>
- * This implementation is based on the Akima implementation in the CubicSpline
- * class in the Math.NET Numerics library. The method referenced is
- * CubicSpline.InterpolateAkimaSorted
- * </p>
- * <p>
- * The {@link #interpolate(double[], double[]) interpolate} method returns a
- * {@link PolynomialSplineFunction} consisting of n cubic polynomials, defined
- * over the subintervals determined by the x values, {@code x[0] < x[i] ... < x[n]}.
- * The Akima algorithm requires that {@code n >= 5}.
- * </p>
- */
- public class AkimaSplineInterpolator
- implements UnivariateInterpolator, FieldUnivariateInterpolator {
- /** The minimum number of points that are needed to compute the function. */
- private static final int MINIMUM_NUMBER_POINTS = 5;
- /** Weight modifier to avoid overshoots. */
- private final boolean useModifiedWeights;
- /** Simple constructor.
- * <p>
- * This constructor is equivalent to call {@link #AkimaSplineInterpolator(boolean)
- * AkimaSplineInterpolator(false)}, i.e. to use original Akima weights
- * </p>
- * @since 2.1
- */
- public AkimaSplineInterpolator() {
- this(false);
- }
- /** Simple constructor.
- * <p>
- * The weight modification is described in <a
- * href="https://blogs.mathworks.com/cleve/2019/04/29/makima-piecewise-cubic-interpolation/">
- * Makima Piecewise Cubic Interpolation</a>. It attempts to avoid overshoots
- * near near constant slopes sub-samples.
- * </p>
- * @param useModifiedWeights if true, use modified weights to avoid overshoots
- * @since 2.1
- */
- public AkimaSplineInterpolator(final boolean useModifiedWeights) {
- this.useModifiedWeights = useModifiedWeights;
- }
- /**
- * Computes an interpolating function for the data set.
- *
- * @param xvals the arguments for the interpolation points
- * @param yvals the values for the interpolation points
- * @return a function which interpolates the data set
- * @throws MathIllegalArgumentException if {@code xvals} and {@code yvals} have
- * different sizes.
- * @throws MathIllegalArgumentException if {@code xvals} is not sorted in
- * strict increasing order.
- * @throws MathIllegalArgumentException if the size of {@code xvals} is smaller
- * than 5.
- */
- @Override
- public PolynomialSplineFunction interpolate(double[] xvals,
- double[] yvals)
- throws MathIllegalArgumentException {
- if (xvals == null ||
- yvals == null) {
- throw new NullArgumentException();
- }
- MathArrays.checkEqualLength(xvals, yvals);
- if (xvals.length < MINIMUM_NUMBER_POINTS) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS,
- xvals.length,
- MINIMUM_NUMBER_POINTS, true);
- }
- MathArrays.checkOrder(xvals);
- final int numberOfDiffAndWeightElements = xvals.length - 1;
- final double[] differences = new double[numberOfDiffAndWeightElements];
- final double[] weights = new double[numberOfDiffAndWeightElements];
- for (int i = 0; i < differences.length; i++) {
- differences[i] = (yvals[i + 1] - yvals[i]) / (xvals[i + 1] - xvals[i]);
- }
- for (int i = 1; i < weights.length; i++) {
- weights[i] = FastMath.abs(differences[i] - differences[i - 1]);
- if (useModifiedWeights) {
- // modify weights to avoid overshoots near constant slopes sub-samples
- weights[i] += FastMath.abs(differences[i] + differences[i - 1]);
- }
- }
- // Prepare Hermite interpolation scheme.
- final double[] firstDerivatives = new double[xvals.length];
- for (int i = 2; i < firstDerivatives.length - 2; i++) {
- final double wP = weights[i + 1];
- final double wM = weights[i - 1];
- if (Precision.equals(wP, 0.0) &&
- Precision.equals(wM, 0.0)) {
- final double xv = xvals[i];
- final double xvP = xvals[i + 1];
- final double xvM = xvals[i - 1];
- firstDerivatives[i] = (((xvP - xv) * differences[i - 1]) + ((xv - xvM) * differences[i])) / (xvP - xvM);
- } else {
- firstDerivatives[i] = ((wP * differences[i - 1]) + (wM * differences[i])) / (wP + wM);
- }
- }
- firstDerivatives[0] = differentiateThreePoint(xvals, yvals, 0, 0, 1, 2);
- firstDerivatives[1] = differentiateThreePoint(xvals, yvals, 1, 0, 1, 2);
- firstDerivatives[xvals.length - 2] = differentiateThreePoint(xvals, yvals, xvals.length - 2,
- xvals.length - 3, xvals.length - 2,
- xvals.length - 1);
- firstDerivatives[xvals.length - 1] = differentiateThreePoint(xvals, yvals, xvals.length - 1,
- xvals.length - 3, xvals.length - 2,
- xvals.length - 1);
- return interpolateHermiteSorted(xvals, yvals, firstDerivatives);
- }
- /**
- * Computes an interpolating function for the data set.
- *
- * @param xvals the arguments for the interpolation points
- * @param yvals the values for the interpolation points
- * @param <T> the type of the field elements
- * @return a function which interpolates the data set
- * @throws MathIllegalArgumentException if {@code xvals} and {@code yvals} have
- * different sizes.
- * @throws MathIllegalArgumentException if {@code xvals} is not sorted in
- * strict increasing order.
- * @throws MathIllegalArgumentException if the size of {@code xvals} is smaller
- * than 5.
- * @since 1.5
- */
- @Override
- public <T extends CalculusFieldElement<T>> FieldPolynomialSplineFunction<T> interpolate(final T[] xvals,
- final T[] yvals)
- throws MathIllegalArgumentException {
- if (xvals == null ||
- yvals == null) {
- throw new NullArgumentException();
- }
- MathArrays.checkEqualLength(xvals, yvals);
- if (xvals.length < MINIMUM_NUMBER_POINTS) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS,
- xvals.length,
- MINIMUM_NUMBER_POINTS, true);
- }
- MathArrays.checkOrder(xvals);
- final Field<T> field = xvals[0].getField();
- final int numberOfDiffAndWeightElements = xvals.length - 1;
- final T[] differences = MathArrays.buildArray(field, numberOfDiffAndWeightElements);
- final T[] weights = MathArrays.buildArray(field, numberOfDiffAndWeightElements);
- for (int i = 0; i < differences.length; i++) {
- differences[i] = yvals[i + 1].subtract(yvals[i]).divide(xvals[i + 1].subtract(xvals[i]));
- }
- for (int i = 1; i < weights.length; i++) {
- weights[i] = FastMath.abs(differences[i].subtract(differences[i - 1]));
- }
- // Prepare Hermite interpolation scheme.
- final T[] firstDerivatives = MathArrays.buildArray(field, xvals.length);
- for (int i = 2; i < firstDerivatives.length - 2; i++) {
- final T wP = weights[i + 1];
- final T wM = weights[i - 1];
- if (Precision.equals(wP.getReal(), 0.0) &&
- Precision.equals(wM.getReal(), 0.0)) {
- final T xv = xvals[i];
- final T xvP = xvals[i + 1];
- final T xvM = xvals[i - 1];
- firstDerivatives[i] = xvP.subtract(xv).multiply(differences[i - 1]).
- add(xv.subtract(xvM).multiply(differences[i])).
- divide(xvP.subtract(xvM));
- } else {
- firstDerivatives[i] = wP.multiply(differences[i - 1]).
- add(wM.multiply(differences[i])).
- divide(wP.add(wM));
- }
- }
- firstDerivatives[0] = differentiateThreePoint(xvals, yvals, 0, 0, 1, 2);
- firstDerivatives[1] = differentiateThreePoint(xvals, yvals, 1, 0, 1, 2);
- firstDerivatives[xvals.length - 2] = differentiateThreePoint(xvals, yvals, xvals.length - 2,
- xvals.length - 3, xvals.length - 2,
- xvals.length - 1);
- firstDerivatives[xvals.length - 1] = differentiateThreePoint(xvals, yvals, xvals.length - 1,
- xvals.length - 3, xvals.length - 2,
- xvals.length - 1);
- return interpolateHermiteSorted(xvals, yvals, firstDerivatives);
- }
- /**
- * Three point differentiation helper, modeled off of the same method in the
- * Math.NET CubicSpline class. This is used by both the Apache Math and the
- * Math.NET Akima Cubic Spline algorithms
- *
- * @param xvals x values to calculate the numerical derivative with
- * @param yvals y values to calculate the numerical derivative with
- * @param indexOfDifferentiation index of the elemnt we are calculating the derivative around
- * @param indexOfFirstSample index of the first element to sample for the three point method
- * @param indexOfSecondsample index of the second element to sample for the three point method
- * @param indexOfThirdSample index of the third element to sample for the three point method
- * @return the derivative
- */
- private double differentiateThreePoint(double[] xvals, double[] yvals,
- int indexOfDifferentiation,
- int indexOfFirstSample,
- int indexOfSecondsample,
- int indexOfThirdSample) {
- final double x0 = yvals[indexOfFirstSample];
- final double x1 = yvals[indexOfSecondsample];
- final double x2 = yvals[indexOfThirdSample];
- final double t = xvals[indexOfDifferentiation] - xvals[indexOfFirstSample];
- final double t1 = xvals[indexOfSecondsample] - xvals[indexOfFirstSample];
- final double t2 = xvals[indexOfThirdSample] - xvals[indexOfFirstSample];
- final double a = (x2 - x0 - (t2 / t1 * (x1 - x0))) / (t2 * t2 - t1 * t2);
- final double b = (x1 - x0 - a * t1 * t1) / t1;
- return (2 * a * t) + b;
- }
- /**
- * Three point differentiation helper, modeled off of the same method in the
- * Math.NET CubicSpline class. This is used by both the Apache Math and the
- * Math.NET Akima Cubic Spline algorithms
- *
- * @param xvals x values to calculate the numerical derivative with
- * @param yvals y values to calculate the numerical derivative with
- * @param <T> the type of the field elements
- * @param indexOfDifferentiation index of the elemnt we are calculating the derivative around
- * @param indexOfFirstSample index of the first element to sample for the three point method
- * @param indexOfSecondsample index of the second element to sample for the three point method
- * @param indexOfThirdSample index of the third element to sample for the three point method
- * @return the derivative
- * @since 1.5
- */
- private <T extends CalculusFieldElement<T>> T differentiateThreePoint(T[] xvals, T[] yvals,
- int indexOfDifferentiation,
- int indexOfFirstSample,
- int indexOfSecondsample,
- int indexOfThirdSample) {
- final T x0 = yvals[indexOfFirstSample];
- final T x1 = yvals[indexOfSecondsample];
- final T x2 = yvals[indexOfThirdSample];
- final T t = xvals[indexOfDifferentiation].subtract(xvals[indexOfFirstSample]);
- final T t1 = xvals[indexOfSecondsample].subtract(xvals[indexOfFirstSample]);
- final T t2 = xvals[indexOfThirdSample].subtract(xvals[indexOfFirstSample]);
- final T a = x2.subtract(x0).subtract(t2.divide(t1).multiply(x1.subtract(x0))).
- divide(t2.multiply(t2).subtract(t1.multiply(t2)));
- final T b = x1.subtract(x0).subtract(a.multiply(t1).multiply(t1)).divide(t1);
- return a.multiply(t).multiply(2).add(b);
- }
- /**
- * Creates a Hermite cubic spline interpolation from the set of (x,y) value
- * pairs and their derivatives. This is modeled off of the
- * InterpolateHermiteSorted method in the Math.NET CubicSpline class.
- *
- * @param xvals x values for interpolation
- * @param yvals y values for interpolation
- * @param firstDerivatives first derivative values of the function
- * @return polynomial that fits the function
- */
- private PolynomialSplineFunction interpolateHermiteSorted(double[] xvals,
- double[] yvals,
- double[] firstDerivatives) {
- MathArrays.checkEqualLength(xvals, yvals);
- MathArrays.checkEqualLength(xvals, firstDerivatives);
- final int minimumLength = 2;
- if (xvals.length < minimumLength) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS,
- xvals.length, minimumLength,
- true);
- }
- final int size = xvals.length - 1;
- final PolynomialFunction[] polynomials = new PolynomialFunction[size];
- final double[] coefficients = new double[4];
- for (int i = 0; i < polynomials.length; i++) {
- final double w = xvals[i + 1] - xvals[i];
- final double w2 = w * w;
- final double yv = yvals[i];
- final double yvP = yvals[i + 1];
- final double fd = firstDerivatives[i];
- final double fdP = firstDerivatives[i + 1];
- coefficients[0] = yv;
- coefficients[1] = firstDerivatives[i];
- coefficients[2] = (3 * (yvP - yv) / w - 2 * fd - fdP) / w;
- coefficients[3] = (2 * (yv - yvP) / w + fd + fdP) / w2;
- polynomials[i] = new PolynomialFunction(coefficients);
- }
- return new PolynomialSplineFunction(xvals, polynomials);
- }
- /**
- * Creates a Hermite cubic spline interpolation from the set of (x,y) value
- * pairs and their derivatives. This is modeled off of the
- * InterpolateHermiteSorted method in the Math.NET CubicSpline class.
- *
- * @param xvals x values for interpolation
- * @param yvals y values for interpolation
- * @param firstDerivatives first derivative values of the function
- * @param <T> the type of the field elements
- * @return polynomial that fits the function
- * @since 1.5
- */
- private <T extends CalculusFieldElement<T>> FieldPolynomialSplineFunction<T> interpolateHermiteSorted(T[] xvals,
- T[] yvals,
- T[] firstDerivatives) {
- MathArrays.checkEqualLength(xvals, yvals);
- MathArrays.checkEqualLength(xvals, firstDerivatives);
- final int minimumLength = 2;
- if (xvals.length < minimumLength) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS,
- xvals.length, minimumLength,
- true);
- }
- final Field<T> field = xvals[0].getField();
- final int size = xvals.length - 1;
- @SuppressWarnings("unchecked")
- final FieldPolynomialFunction<T>[] polynomials =
- (FieldPolynomialFunction<T>[]) Array.newInstance(FieldPolynomialFunction.class, size);
- final T[] coefficients = MathArrays.buildArray(field, 4);
- for (int i = 0; i < polynomials.length; i++) {
- final T w = xvals[i + 1].subtract(xvals[i]);
- final T w2 = w.multiply(w);
- final T yv = yvals[i];
- final T yvP = yvals[i + 1];
- final T fd = firstDerivatives[i];
- final T fdP = firstDerivatives[i + 1];
- coefficients[0] = yv;
- coefficients[1] = firstDerivatives[i];
- final T ratio = yvP.subtract(yv).divide(w);
- coefficients[2] = ratio.multiply(+3).subtract(fd.add(fd)).subtract(fdP).divide(w);
- coefficients[3] = ratio.multiply(-2).add(fd).add(fdP).divide(w2);
- polynomials[i] = new FieldPolynomialFunction<>(coefficients);
- }
- return new FieldPolynomialSplineFunction<>(xvals, polynomials);
- }
- }