IterativeLegendreFieldGaussIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.integration;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.integration.gauss.FieldGaussIntegrator;
- import org.hipparchus.analysis.integration.gauss.FieldGaussIntegratorFactory;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.util.FastMath;
- /**
- * This algorithm divides the integration interval into equally-sized
- * sub-interval and on each of them performs a
- * <a href="http://mathworld.wolfram.com/Legendre-GaussQuadrature.html">
- * Legendre-Gauss</a> quadrature.
- * Because of its <em>non-adaptive</em> nature, this algorithm can
- * converge to a wrong value for the integral (for example, if the
- * function is significantly different from zero toward the ends of the
- * integration interval).
- * In particular, a change of variables aimed at estimating integrals
- * over infinite intervals as proposed
- * <a href="http://en.wikipedia.org/w/index.php?title=Numerical_integration#Integrals_over_infinite_intervals">
- * here</a> should be avoided when using this class.
- *
- * @param <T> Type of the field elements.
- * @since 2.0
- */
- public class IterativeLegendreFieldGaussIntegrator<T extends CalculusFieldElement<T>>
- extends BaseAbstractFieldUnivariateIntegrator<T> {
- /** Factory that computes the points and weights. */
- private final FieldGaussIntegratorFactory<T> factory;
- /** Number of integration points (per interval). */
- private final int numberOfPoints;
- /**
- * Builds an integrator with given accuracies and iterations counts.
- *
- * @param field field to which function argument and value belong
- * @param n Number of integration points.
- * @param relativeAccuracy Relative accuracy of the result.
- * @param absoluteAccuracy Absolute accuracy of the result.
- * @param minimalIterationCount Minimum number of iterations.
- * @param maximalIterationCount Maximum number of iterations.
- * @throws MathIllegalArgumentException if minimal number of iterations
- * or number of points are not strictly positive.
- * @throws MathIllegalArgumentException if maximal number of iterations
- * is smaller than or equal to the minimal number of iterations.
- */
- public IterativeLegendreFieldGaussIntegrator(final Field<T> field, final int n,
- final double relativeAccuracy,
- final double absoluteAccuracy,
- final int minimalIterationCount,
- final int maximalIterationCount)
- throws MathIllegalArgumentException {
- super(field, relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
- if (n <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS, n);
- }
- factory = new FieldGaussIntegratorFactory<>(field);
- numberOfPoints = n;
- }
- /**
- * Builds an integrator with given accuracies.
- *
- * @param field field to which function argument and value belong
- * @param n Number of integration points.
- * @param relativeAccuracy Relative accuracy of the result.
- * @param absoluteAccuracy Absolute accuracy of the result.
- * @throws MathIllegalArgumentException if {@code n < 1}.
- */
- public IterativeLegendreFieldGaussIntegrator(final Field<T> field, final int n,
- final double relativeAccuracy,
- final double absoluteAccuracy)
- throws MathIllegalArgumentException {
- this(field, n, relativeAccuracy, absoluteAccuracy,
- DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT);
- }
- /**
- * Builds an integrator with given iteration counts.
- *
- * @param field field to which function argument and value belong
- * @param n Number of integration points.
- * @param minimalIterationCount Minimum number of iterations.
- * @param maximalIterationCount Maximum number of iterations.
- * @throws MathIllegalArgumentException if minimal number of iterations
- * is not strictly positive.
- * @throws MathIllegalArgumentException if maximal number of iterations
- * is smaller than or equal to the minimal number of iterations.
- * @throws MathIllegalArgumentException if {@code n < 1}.
- */
- public IterativeLegendreFieldGaussIntegrator(final Field<T> field, final int n,
- final int minimalIterationCount,
- final int maximalIterationCount)
- throws MathIllegalArgumentException {
- this(field, n, DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY,
- minimalIterationCount, maximalIterationCount);
- }
- /** {@inheritDoc} */
- @Override
- protected T doIntegrate()
- throws MathIllegalArgumentException, MathIllegalStateException {
- // Compute first estimate with a single step.
- T oldt = stage(1);
- int n = 2;
- while (true) {
- // Improve integral with a larger number of steps.
- final T t = stage(n);
- // Estimate the error.
- final double delta = FastMath.abs(t.subtract(oldt)).getReal();
- final double limit =
- FastMath.max(getAbsoluteAccuracy(),
- FastMath.abs(oldt).add(FastMath.abs(t)).multiply(0.5 * getRelativeAccuracy()).getReal());
- // check convergence
- if (iterations.getCount() + 1 >= getMinimalIterationCount() &&
- delta <= limit) {
- return t;
- }
- // Prepare next iteration.
- final double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / numberOfPoints));
- n = FastMath.max((int) (ratio * n), n + 1);
- oldt = t;
- iterations.increment();
- }
- }
- /**
- * Compute the n-th stage integral.
- *
- * @param n Number of steps.
- * @return the value of n-th stage integral.
- * @throws MathIllegalStateException if the maximum number of evaluations
- * is exceeded.
- */
- private T stage(final int n)
- throws MathIllegalStateException {
- final T min = getMin();
- final T max = getMax();
- final T step = max.subtract(min).divide(n);
- T sum = getField().getZero();
- for (int i = 0; i < n; i++) {
- // Integrate over each sub-interval [a, b].
- final T a = min.add(step.multiply(i));
- final T b = a.add(step);
- final FieldGaussIntegrator<T> g = factory.legendre(numberOfPoints, a, b);
- sum = sum.add(g.integrate(super::computeObjectiveValue));
- }
- return sum;
- }
- }