LegendreRuleFactory.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.analysis.integration.gauss;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.util.Pair;
/**
* Factory that creates Gauss-type quadrature rule using Legendre polynomials.
* In this implementation, the lower and upper bounds of the natural interval
* of integration are -1 and 1, respectively.
* The Legendre polynomials are evaluated using the recurrence relation
* presented in <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
*
*/
public class LegendreRuleFactory extends AbstractRuleFactory {
/** Empty constructor.
* <p>
* This constructor is not strictly necessary, but it prevents spurious
* javadoc warnings with JDK 18 and later.
* </p>
* @since 3.0
*/
public LegendreRuleFactory() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
// nothing to do
}
/** {@inheritDoc} */
@Override
protected Pair<double[], double[]> computeRule(int numberOfPoints)
throws MathIllegalArgumentException {
if (numberOfPoints == 1) {
// Break recursion.
return new Pair<>(new double[] { 0 } , new double[] { 2 });
}
// find nodes as roots of Legendre polynomial
final Legendre p = new Legendre(numberOfPoints);
final double[] points = findRoots(numberOfPoints, p::ratio);
enforceSymmetry(points);
// compute weights
final double[] weights = new double[numberOfPoints];
for (int i = 0; i <= numberOfPoints / 2; i++) {
final double c = points[i];
final double[] pKpKm1 = p.pNpNm1(c);
final double d = numberOfPoints * (pKpKm1[1] - c * pKpKm1[0]);
weights[i] = 2 * (1 - c * c) / (d * d);
// symmetrical point
final int idx = numberOfPoints - i - 1;
weights[idx] = weights[i];
}
return new Pair<>(points, weights);
}
/** Legendre polynomial. */
private static class Legendre {
/** Degree. */
private int degree;
/** Simple constructor.
* @param degree polynomial degree
*/
Legendre(int degree) {
this.degree = degree;
}
/** Compute ratio P(x)/P'(x).
* @param x point at which ratio must be computed
* @return ratio P(x)/P'(x)
*/
public double ratio(double x) {
double pm = 1;
double p = x;
double d = 1;
for (int n = 1; n < degree; n++) {
// apply recurrence relations (n+1) Pₙ₊₁(x) = (2n+1) x Pₙ(x) - n Pₙ₋₁(x)
// and P'ₙ₊₁(x) = (n+1) Pₙ(x) + x P'ₙ(x)
final double pp = (p * (x * (2 * n + 1)) - pm * n) / (n + 1);
d = p * (n + 1) + d * x;
pm = p;
p = pp;
}
return p / d;
}
/** Compute Pₙ(x) and Pₙ₋₁(x).
* @param x point at which polynomials are evaluated
* @return array containing Pₙ(x) at index 0 and Pₙ₋₁(x) at index 1
*/
private double[] pNpNm1(final double x) {
double[] p = { x, 1 };
for (int n = 1; n < degree; n++) {
// apply recurrence relation (n+1) Pₙ₊₁(x) = (2n+1) x Pₙ(x) - n Pₙ₋₁(x)
final double pp = (p[0] * (x * (2 * n + 1)) - p[1] * n) / (n + 1);
p[1] = p[0];
p[0] = pp;
}
return p;
}
}
}