LaguerreRuleFactory.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.integration.gauss;
- import org.hipparchus.util.Pair;
- /**
- * Factory that creates Gauss-type quadrature rule using Laguerre polynomials.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature">Gauss-Laguerre quadrature (Wikipedia)</a>
- */
- public class LaguerreRuleFactory extends AbstractRuleFactory {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public LaguerreRuleFactory() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /** {@inheritDoc} */
- @Override
- protected Pair<double[], double[]> computeRule(int numberOfPoints) {
- // find nodes as roots of Laguerre polynomial
- final double[] points = findRoots(numberOfPoints, new Laguerre(numberOfPoints)::ratio);
- // compute weights
- final double[] weights = new double[numberOfPoints];
- final int n1 = numberOfPoints + 1;
- final long n1Squared = n1 * (long) n1;
- final Laguerre laguerreN1 = new Laguerre(n1);
- for (int i = 0; i < numberOfPoints; i++) {
- final double val = laguerreN1.value(points[i]);
- weights[i] = points[i] / (n1Squared * val * val);
- }
- return new Pair<>(points, weights);
- }
- /** Laguerre polynomial. */
- private static class Laguerre {
- /** Degree. */
- private int degree;
- /** Simple constructor.
- * @param degree polynomial degree
- */
- Laguerre(int degree) {
- this.degree = degree;
- }
- /** Evaluate polynomial.
- * @param x point at which polynomial must be evaluated
- * @return value of the polynomial
- */
- public double value(final double x) {
- return lNlNm1(x)[0];
- }
- /** Compute ratio L(x)/L'(x).
- * @param x point at which ratio must be computed
- * @return ratio L(x)/L'(x)
- */
- public double ratio(double x) {
- double[] l = lNlNm1(x);
- return x * l[0] / (degree * (l[0] - l[1]));
- }
- /** Compute Lₙ(x) and Lₙ₋₁(x).
- * @param x point at which polynomials are evaluated
- * @return array containing Lₙ(x) at index 0 and Lₙ₋₁(x) at index 1
- */
- private double[] lNlNm1(final double x) {
- double[] l = { 1 - x, 1 };
- for (int n = 1; n < degree; n++) {
- // apply recurrence relation (n+1) Lₙ₊₁(x) = (2n + 1 - x) Lₙ(x) - n Lₙ₋₁(x)
- final double lp = (l[0] * (2 * n + 1 - x) - l[1] * n) / (n + 1);
- l[1] = l[0];
- l[0] = lp;
- }
- return l;
- }
- }
- }