FieldGaussIntegratorFactory.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.integration.gauss;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.Pair;
- /**
- * Class that provides different ways to compute the nodes and weights to be
- * used by the {@link GaussIntegrator Gaussian integration rule}.
- * @param <T> Type of the field elements.
- * @since 2.0
- */
- public class FieldGaussIntegratorFactory<T extends CalculusFieldElement<T>> {
- /** Generator of Gauss-Legendre integrators. */
- private final FieldRuleFactory<T> legendre;
- /** Generator of Gauss-Hermite integrators. */
- private final FieldRuleFactory<T> hermite;
- /** Generator of Gauss-Laguerre integrators. */
- private final FieldRuleFactory<T> laguerre;
- /** Simple constructor.
- * @param field field to which function argument and value belong
- */
- public FieldGaussIntegratorFactory(final Field<T> field) {
- legendre = new FieldLegendreRuleFactory<>(field);
- hermite = new FieldHermiteRuleFactory<>(field);
- laguerre = new FieldLaguerreRuleFactory<>(field);
- }
- /**
- * Creates a Gauss-Laguerre integrator of the given order.
- * The call to the
- * {@link GaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
- * integrate} method will perform an integration on the interval
- * \([0, +\infty)\): the computed value is the improper integral of
- * \(e^{-x} f(x)\)
- * where \(f(x)\) is the function passed to the
- * {@link SymmetricGaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
- * integrate} method.
- *
- * @param numberOfPoints Order of the integration rule.
- * @return a Gauss-Legendre integrator.
- */
- public FieldGaussIntegrator<T> laguerre(int numberOfPoints) {
- return new FieldGaussIntegrator<>(laguerre.getRule(numberOfPoints));
- }
- /**
- * Creates a Gauss-Legendre integrator of the given order.
- * The call to the
- * {@link FieldGaussIntegrator#integrate(org.hipparchus.analysis.CalculusFieldUnivariateFunction)
- * integrate} method will perform an integration on the natural interval
- * {@code [-1 , 1]}.
- *
- * @param numberOfPoints Order of the integration rule.
- * @return a Gauss-Legendre integrator.
- */
- public FieldGaussIntegrator<T> legendre(int numberOfPoints) {
- return new FieldGaussIntegrator<>(legendre.getRule(numberOfPoints));
- }
- /**
- * Creates a Gauss-Legendre integrator of the given order.
- * The call to the
- * {@link FieldGaussIntegrator#integrate(org.hipparchus.analysis.CalculusFieldUnivariateFunction)
- * integrate} method will perform an integration on the given interval.
- *
- * @param numberOfPoints Order of the integration rule.
- * @param lowerBound Lower bound of the integration interval.
- * @param upperBound Upper bound of the integration interval.
- * @return a Gauss-Legendre integrator.
- * @throws MathIllegalArgumentException if number of points is not positive
- */
- public FieldGaussIntegrator<T> legendre(int numberOfPoints,
- T lowerBound,
- T upperBound)
- throws MathIllegalArgumentException {
- return new FieldGaussIntegrator<>(transform(legendre.getRule(numberOfPoints),
- lowerBound, upperBound));
- }
- /**
- * Creates a Gauss-Hermite integrator of the given order.
- * The call to the
- * {@link SymmetricGaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
- * integrate} method will perform a weighted integration on the interval
- * \([-\infty, +\infty]\): the computed value is the improper integral of
- * \(e^{-x^2}f(x)\)
- * where \(f(x)\) is the function passed to the
- * {@link SymmetricGaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
- * integrate} method.
- *
- * @param numberOfPoints Order of the integration rule.
- * @return a Gauss-Hermite integrator.
- */
- public SymmetricFieldGaussIntegrator<T> hermite(int numberOfPoints) {
- return new SymmetricFieldGaussIntegrator<>(hermite.getRule(numberOfPoints));
- }
- /**
- * Performs a change of variable so that the integration can be performed
- * on an arbitrary interval {@code [a, b]}.
- * It is assumed that the natural interval is {@code [-1, 1]}.
- *
- * @param rule Original points and weights.
- * @param a Lower bound of the integration interval.
- * @param b Lower bound of the integration interval.
- * @return the points and weights adapted to the new interval.
- */
- private Pair<T[], T[]> transform(Pair<T[], T[]> rule, T a, T b) {
- final T[] points = rule.getFirst();
- final T[] weights = rule.getSecond();
- // Scaling
- final T scale = b.subtract(a).multiply(0.5);
- final T shift = a.add(scale);
- for (int i = 0; i < points.length; i++) {
- points[i] = points[i].multiply(scale).add(shift);
- weights[i] = weights[i].multiply(scale);
- }
- return new Pair<>(points, weights);
- }
- }