FieldGaussIntegratorFactory.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.analysis.integration.gauss;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.util.Pair;
/**
* Class that provides different ways to compute the nodes and weights to be
* used by the {@link GaussIntegrator Gaussian integration rule}.
* @param <T> Type of the field elements.
* @since 2.0
*/
public class FieldGaussIntegratorFactory<T extends CalculusFieldElement<T>> {
/** Generator of Gauss-Legendre integrators. */
private final FieldRuleFactory<T> legendre;
/** Generator of Gauss-Hermite integrators. */
private final FieldRuleFactory<T> hermite;
/** Generator of Gauss-Laguerre integrators. */
private final FieldRuleFactory<T> laguerre;
/** Simple constructor.
* @param field field to which function argument and value belong
*/
public FieldGaussIntegratorFactory(final Field<T> field) {
legendre = new FieldLegendreRuleFactory<>(field);
hermite = new FieldHermiteRuleFactory<>(field);
laguerre = new FieldLaguerreRuleFactory<>(field);
}
/**
* Creates a Gauss-Laguerre integrator of the given order.
* The call to the
* {@link GaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
* integrate} method will perform an integration on the interval
* \([0, +\infty)\): the computed value is the improper integral of
* \(e^{-x} f(x)\)
* where \(f(x)\) is the function passed to the
* {@link SymmetricGaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
* integrate} method.
*
* @param numberOfPoints Order of the integration rule.
* @return a Gauss-Legendre integrator.
*/
public FieldGaussIntegrator<T> laguerre(int numberOfPoints) {
return new FieldGaussIntegrator<>(laguerre.getRule(numberOfPoints));
}
/**
* Creates a Gauss-Legendre integrator of the given order.
* The call to the
* {@link FieldGaussIntegrator#integrate(org.hipparchus.analysis.CalculusFieldUnivariateFunction)
* integrate} method will perform an integration on the natural interval
* {@code [-1 , 1]}.
*
* @param numberOfPoints Order of the integration rule.
* @return a Gauss-Legendre integrator.
*/
public FieldGaussIntegrator<T> legendre(int numberOfPoints) {
return new FieldGaussIntegrator<>(legendre.getRule(numberOfPoints));
}
/**
* Creates a Gauss-Legendre integrator of the given order.
* The call to the
* {@link FieldGaussIntegrator#integrate(org.hipparchus.analysis.CalculusFieldUnivariateFunction)
* integrate} method will perform an integration on the given interval.
*
* @param numberOfPoints Order of the integration rule.
* @param lowerBound Lower bound of the integration interval.
* @param upperBound Upper bound of the integration interval.
* @return a Gauss-Legendre integrator.
* @throws MathIllegalArgumentException if number of points is not positive
*/
public FieldGaussIntegrator<T> legendre(int numberOfPoints,
T lowerBound,
T upperBound)
throws MathIllegalArgumentException {
return new FieldGaussIntegrator<>(transform(legendre.getRule(numberOfPoints),
lowerBound, upperBound));
}
/**
* Creates a Gauss-Hermite integrator of the given order.
* The call to the
* {@link SymmetricGaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
* integrate} method will perform a weighted integration on the interval
* \([-\infty, +\infty]\): the computed value is the improper integral of
* \(e^{-x^2}f(x)\)
* where \(f(x)\) is the function passed to the
* {@link SymmetricGaussIntegrator#integrate(org.hipparchus.analysis.UnivariateFunction)
* integrate} method.
*
* @param numberOfPoints Order of the integration rule.
* @return a Gauss-Hermite integrator.
*/
public SymmetricFieldGaussIntegrator<T> hermite(int numberOfPoints) {
return new SymmetricFieldGaussIntegrator<>(hermite.getRule(numberOfPoints));
}
/**
* Performs a change of variable so that the integration can be performed
* on an arbitrary interval {@code [a, b]}.
* It is assumed that the natural interval is {@code [-1, 1]}.
*
* @param rule Original points and weights.
* @param a Lower bound of the integration interval.
* @param b Lower bound of the integration interval.
* @return the points and weights adapted to the new interval.
*/
private Pair<T[], T[]> transform(Pair<T[], T[]> rule, T a, T b) {
final T[] points = rule.getFirst();
final T[] weights = rule.getSecond();
// Scaling
final T scale = b.subtract(a).multiply(0.5);
final T shift = a.add(scale);
for (int i = 0; i < points.length; i++) {
points[i] = points[i].multiply(scale).add(shift);
weights[i] = weights[i].multiply(scale);
}
return new Pair<>(points, weights);
}
}