AbstractRuleFactory.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.analysis.integration.gauss;
- import java.util.Arrays;
- import java.util.SortedMap;
- import java.util.TreeMap;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.Incrementor;
- import org.hipparchus.util.Pair;
- /**
- * Base class for rules that determines the integration nodes and their
- * weights.
- * Subclasses must implement the {@link #computeRule(int) computeRule} method.
- *
- * @since 2.0
- */
- public abstract class AbstractRuleFactory implements RuleFactory {
- /** List of points and weights, indexed by the order of the rule. */
- private final SortedMap<Integer, Pair<double[], double[]>> pointsAndWeights = new TreeMap<>();
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- protected AbstractRuleFactory() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /** {@inheritDoc} */
- @Override
- public Pair<double[], double[]> getRule(int numberOfPoints)
- throws MathIllegalArgumentException {
- if (numberOfPoints <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_POINTS,
- numberOfPoints);
- }
- if (numberOfPoints > 1000) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE,
- numberOfPoints, 1000);
- }
- Pair<double[], double[]> rule;
- synchronized (pointsAndWeights) {
- // Try to obtain the rule from the cache.
- rule = pointsAndWeights.get(numberOfPoints);
- if (rule == null) {
- // Rule not computed yet.
- // Compute the rule.
- rule = computeRule(numberOfPoints);
- // Cache it.
- pointsAndWeights.put(numberOfPoints, rule);
- }
- }
- // Return a copy.
- return new Pair<>(rule.getFirst().clone(), rule.getSecond().clone());
- }
- /**
- * Computes the rule for the given order.
- *
- * @param numberOfPoints Order of the rule to be computed.
- * @return the computed rule.
- * @throws MathIllegalArgumentException if the elements of the pair do not
- * have the same length.
- */
- protected abstract Pair<double[], double[]> computeRule(int numberOfPoints)
- throws MathIllegalArgumentException;
- /** Computes roots of the associated orthogonal polynomials.
- * <p>
- * The roots are found using the <a href="https://en.wikipedia.org/wiki/Aberth_method">Aberth method</a>.
- * The guess points for initializing search for degree n are fixed for degrees 1 and 2 and are
- * selected from n-1 roots of rule n-1 (the two extreme roots are used, plus the n-1 intermediate
- * points between all roots).
- * </p>
- * @param n number of roots to search for
- * @param ratioEvaluator function evaluating the ratio Pₙ(x)/Pₙ'(x)
- * @return sorted array of roots
- */
- protected double[] findRoots(final int n, final UnivariateFunction ratioEvaluator) {
- final double[] roots = new double[n];
- // set up initial guess
- if (n == 1) {
- // arbitrary guess
- roots[0] = 0;
- } else if (n == 2) {
- // arbitrary guess
- roots[0] = -1;
- roots[1] = +1;
- } else {
- // get roots from previous rule.
- // If it has not been computed yet it will trigger a recursive call
- final double[] previousPoints = getRule(n - 1).getFirst();
- // first guess at previous first root
- roots[0] = previousPoints[0];
- // intermediate guesses between previous roots
- for (int i = 1; i < n - 1; ++i) {
- roots[i] = (previousPoints[i - 1] + previousPoints[i]) * 0.5;
- }
- // last guess at previous last root
- roots[n - 1] = previousPoints[n - 2];
- }
- // use Aberth method to find all roots simultaneously
- final double[] ratio = new double[n];
- final Incrementor incrementor = new Incrementor(1000);
- double tol;
- double maxOffset;
- do {
- // safety check that triggers an exception if too much iterations are made
- incrementor.increment();
- // find the ratio P(xᵢ)/P'(xᵢ) for all current roots approximations
- for (int i = 0; i < n; ++i) {
- ratio[i] = ratioEvaluator.value(roots[i]);
- }
- // move roots approximations all at once, using Aberth method
- maxOffset = 0;
- for (int i = 0; i < n; ++i) {
- double sum = 0;
- for (int j = 0; j < n; ++j) {
- if (j != i) {
- sum += 1 / (roots[i] - roots[j]);
- }
- }
- final double offset = ratio[i] / (1 - ratio[i] * sum);
- maxOffset = FastMath.max(maxOffset, FastMath.abs(offset));
- roots[i] -= offset;
- }
- // we set tolerance to 1 ulp of the largest root
- tol = 0;
- for (final double r : roots) {
- tol = FastMath.max(tol, FastMath.ulp(r));
- }
- } while (maxOffset > tol);
- // sort the roots
- Arrays.sort(roots);
- return roots;
- }
- /** Enforce symmetry of roots.
- * @param roots roots to process in place
- */
- protected void enforceSymmetry(final double[] roots) {
- final int n = roots.length;
- // enforce symmetry
- for (int i = 0; i < n / 2; ++i) {
- final int idx = n - i - 1;
- final double c = (roots[i] - roots[idx]) * 0.5;
- roots[i] = +c;
- roots[idx] = -c;
- }
- // If n is odd, 0 is a root.
- // Note: as written, the test for oddness will work for negative
- // integers too (although it is not necessary here), preventing
- // a FindBugs warning.
- if (n % 2 != 0) {
- roots[n / 2] = 0;
- }
- }
- }