Sinc.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.function;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.SinCos;
- /**
- * <a href="http://en.wikipedia.org/wiki/Sinc_function">Sinc</a> function,
- * defined by
- * <pre><code>
- * sinc(x) = 1 if x = 0,
- * sin(x) / x otherwise.
- * </code></pre>
- *
- */
- public class Sinc implements UnivariateDifferentiableFunction {
- /**
- * Value below which the computations are done using Taylor series.
- * <p>
- * The Taylor series for sinc even order derivatives are:
- * <pre>
- * d^(2n)sinc/dx^(2n) = Sum_(k>=0) (-1)^(n+k) / ((2k)!(2n+2k+1)) x^(2k)
- * = (-1)^n [ 1/(2n+1) - x^2/(4n+6) + x^4/(48n+120) - x^6/(1440n+5040) + O(x^8) ]
- * </pre>
- * </p>
- * <p>
- * The Taylor series for sinc odd order derivatives are:
- * <pre>
- * d^(2n+1)sinc/dx^(2n+1) = Sum_(k>=0) (-1)^(n+k+1) / ((2k+1)!(2n+2k+3)) x^(2k+1)
- * = (-1)^(n+1) [ x/(2n+3) - x^3/(12n+30) + x^5/(240n+840) - x^7/(10080n+45360) + O(x^9) ]
- * </pre>
- * </p>
- * <p>
- * So the ratio of the fourth term with respect to the first term
- * is always smaller than x^6/720, for all derivative orders.
- * This implies that neglecting this term and using only the first three terms induces
- * a relative error bounded by x^6/720. The SHORTCUT value is chosen such that this
- * relative error is below double precision accuracy when |x| <= SHORTCUT.
- * </p>
- */
- private static final double SHORTCUT = 6.0e-3;
- /** For normalized sinc function. */
- private final boolean normalized;
- /**
- * The sinc function, {@code sin(x) / x}.
- */
- public Sinc() {
- this(false);
- }
- /**
- * Instantiates the sinc function.
- *
- * @param normalized If {@code true}, the function is
- * <code> sin(πx) / πx</code>, otherwise {@code sin(x) / x}.
- */
- public Sinc(boolean normalized) {
- this.normalized = normalized;
- }
- /** {@inheritDoc} */
- @Override
- public double value(final double x) {
- final double scaledX = normalized ? FastMath.PI * x : x;
- if (FastMath.abs(scaledX) <= SHORTCUT) {
- // use Taylor series
- final double scaledX2 = scaledX * scaledX;
- return ((scaledX2 - 20) * scaledX2 + 120) / 120;
- } else {
- // use definition expression
- return FastMath.sin(scaledX) / scaledX;
- }
- }
- /** {@inheritDoc}
- */
- @Override
- public <T extends Derivative<T>> T value(T t)
- throws MathIllegalArgumentException {
- final double scaledX = (normalized ? FastMath.PI : 1) * t.getValue();
- final double scaledX2 = scaledX * scaledX;
- double[] f = new double[t.getOrder() + 1];
- if (FastMath.abs(scaledX) <= SHORTCUT) {
- for (int i = 0; i < f.length; ++i) {
- final int k = i / 2;
- if ((i & 0x1) == 0) {
- // even derivation order
- f[i] = (((k & 0x1) == 0) ? 1 : -1) *
- (1.0 / (i + 1) - scaledX2 * (1.0 / (2 * i + 6) - scaledX2 / (24 * i + 120)));
- } else {
- // odd derivation order
- f[i] = (((k & 0x1) == 0) ? -scaledX : scaledX) *
- (1.0 / (i + 2) - scaledX2 * (1.0 / (6 * i + 24) - scaledX2 / (120 * i + 720)));
- }
- }
- } else {
- final double inv = 1 / scaledX;
- final SinCos sinCos = FastMath.sinCos(scaledX);
- f[0] = inv * sinCos.sin();
- // the nth order derivative of sinc has the form:
- // dn(sinc(x)/dxn = [S_n(x) sin(x) + C_n(x) cos(x)] / x^(n+1)
- // where S_n(x) is an even polynomial with degree n-1 or n (depending on parity)
- // and C_n(x) is an odd polynomial with degree n-1 or n (depending on parity)
- // S_0(x) = 1, S_1(x) = -1, S_2(x) = -x^2 + 2, S_3(x) = 3x^2 - 6...
- // C_0(x) = 0, C_1(x) = x, C_2(x) = -2x, C_3(x) = -x^3 + 6x...
- // the general recurrence relations for S_n and C_n are:
- // S_n(x) = x S_(n-1)'(x) - n S_(n-1)(x) - x C_(n-1)(x)
- // C_n(x) = x C_(n-1)'(x) - n C_(n-1)(x) + x S_(n-1)(x)
- // as per polynomials parity, we can store both S_n and C_n in the same array
- final double[] sc = new double[f.length];
- sc[0] = 1;
- double coeff = inv;
- for (int n = 1; n < f.length; ++n) {
- double s = 0;
- double c = 0;
- // update and evaluate polynomials S_n(x) and C_n(x)
- final int kStart;
- if ((n & 0x1) == 0) {
- // even derivation order, S_n is degree n and C_n is degree n-1
- sc[n] = 0;
- kStart = n;
- } else {
- // odd derivation order, S_n is degree n-1 and C_n is degree n
- sc[n] = sc[n - 1];
- c = sc[n];
- kStart = n - 1;
- }
- // in this loop, k is always even
- for (int k = kStart; k > 1; k -= 2) {
- // sine part
- sc[k] = (k - n) * sc[k] - sc[k - 1];
- s = s * scaledX2 + sc[k];
- // cosine part
- sc[k - 1] = (k - 1 - n) * sc[k - 1] + sc[k -2];
- c = c * scaledX2 + sc[k - 1];
- }
- sc[0] *= -n;
- s = s * scaledX2 + sc[0];
- coeff *= inv;
- f[n] = coeff * (s * sinCos.sin() + c * scaledX * sinCos.cos());
- }
- }
- if (normalized) {
- double scale = FastMath.PI;
- for (int i = 1; i < f.length; ++i) {
- f[i] *= scale;
- scale *= FastMath.PI;
- }
- }
- return t.compose(f);
- }
- }