Sigmoid.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.function;
- import java.util.Arrays;
- import org.hipparchus.analysis.ParametricUnivariateFunction;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * <a href="http://en.wikipedia.org/wiki/Sigmoid_function">
- * Sigmoid</a> function.
- * It is the inverse of the {@link Logit logit} function.
- * A more flexible version, the generalised logistic, is implemented
- * by the {@link Logistic} class.
- *
- */
- public class Sigmoid implements UnivariateDifferentiableFunction {
- /** Lower asymptote. */
- private final double lo;
- /** Higher asymptote. */
- private final double hi;
- /**
- * Usual sigmoid function, where the lower asymptote is 0 and the higher
- * asymptote is 1.
- */
- public Sigmoid() {
- this(0, 1);
- }
- /**
- * Sigmoid function.
- *
- * @param lo Lower asymptote.
- * @param hi Higher asymptote.
- */
- public Sigmoid(double lo,
- double hi) {
- this.lo = lo;
- this.hi = hi;
- }
- /** {@inheritDoc} */
- @Override
- public double value(double x) {
- return value(x, lo, hi);
- }
- /**
- * Parametric function where the input array contains the parameters of
- * the {@link Sigmoid#Sigmoid(double,double) sigmoid function}, ordered
- * as follows:
- * <ul>
- * <li>Lower asymptote</li>
- * <li>Higher asymptote</li>
- * </ul>
- */
- public static class Parametric implements ParametricUnivariateFunction {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public Parametric() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /**
- * Computes the value of the sigmoid at {@code x}.
- *
- * @param x Value for which the function must be computed.
- * @param param Values of lower asymptote and higher asymptote.
- * @return the value of the function.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 2.
- */
- @Override
- public double value(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- return Sigmoid.value(x, param[0], param[1]);
- }
- /**
- * Computes the value of the gradient at {@code x}.
- * The components of the gradient vector are the partial
- * derivatives of the function with respect to each of the
- * <em>parameters</em> (lower asymptote and higher asymptote).
- *
- * @param x Value at which the gradient must be computed.
- * @param param Values for lower asymptote and higher asymptote.
- * @return the gradient vector at {@code x}.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 2.
- */
- @Override
- public double[] gradient(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- final double invExp1 = 1 / (1 + FastMath.exp(-x));
- return new double[] { 1 - invExp1, invExp1 };
- }
- /**
- * Validates parameters to ensure they are appropriate for the evaluation of
- * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
- * methods.
- *
- * @param param Values for lower and higher asymptotes.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 2.
- */
- private void validateParameters(double[] param)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(param);
- MathUtils.checkDimension(param.length, 2);
- }
- }
- /**
- * @param x Value at which to compute the sigmoid.
- * @param lo Lower asymptote.
- * @param hi Higher asymptote.
- * @return the value of the sigmoid function at {@code x}.
- */
- private static double value(double x,
- double lo,
- double hi) {
- return lo + (hi - lo) / (1 + FastMath.exp(-x));
- }
- /** {@inheritDoc}
- */
- @Override
- public <T extends Derivative<T>> T value(T t)
- throws MathIllegalArgumentException {
- double[] f = new double[t.getOrder() + 1];
- final double exp = FastMath.exp(-t.getValue());
- if (Double.isInfinite(exp)) {
- // special handling near lower boundary, to avoid NaN
- f[0] = lo;
- Arrays.fill(f, 1, f.length, 0.0);
- } else {
- // the nth order derivative of sigmoid has the form:
- // dn(sigmoid(x)/dxn = P_n(exp(-x)) / (1+exp(-x))^(n+1)
- // where P_n(t) is a degree n polynomial with normalized higher term
- // P_0(t) = 1, P_1(t) = t, P_2(t) = t^2 - t, P_3(t) = t^3 - 4 t^2 + t...
- // the general recurrence relation for P_n is:
- // P_n(x) = n t P_(n-1)(t) - t (1 + t) P_(n-1)'(t)
- final double[] p = new double[f.length];
- final double inv = 1 / (1 + exp);
- double coeff = hi - lo;
- for (int n = 0; n < f.length; ++n) {
- // update and evaluate polynomial P_n(t)
- double v = 0;
- p[n] = 1;
- for (int k = n; k >= 0; --k) {
- v = v * exp + p[k];
- if (k > 1) {
- p[k - 1] = (n - k + 2) * p[k - 2] - (k - 1) * p[k - 1];
- } else {
- p[0] = 0;
- }
- }
- coeff *= inv;
- f[n] = coeff * v;
- }
- // fix function value
- f[0] += lo;
- }
- return t.compose(f);
- }
- }