Logit.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.function;
- import org.hipparchus.analysis.ParametricUnivariateFunction;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * <a href="http://en.wikipedia.org/wiki/Logit">
- * Logit</a> function.
- * It is the inverse of the {@link Sigmoid sigmoid} function.
- *
- */
- public class Logit implements UnivariateDifferentiableFunction {
- /** Lower bound. */
- private final double lo;
- /** Higher bound. */
- private final double hi;
- /**
- * Usual logit function, where the lower bound is 0 and the higher
- * bound is 1.
- */
- public Logit() {
- this(0, 1);
- }
- /**
- * Logit function.
- *
- * @param lo Lower bound of the function domain.
- * @param hi Higher bound of the function domain.
- */
- public Logit(double lo,
- double hi) {
- this.lo = lo;
- this.hi = hi;
- }
- /** {@inheritDoc} */
- @Override
- public double value(double x)
- throws MathIllegalArgumentException {
- return value(x, lo, hi);
- }
- /**
- * Parametric function where the input array contains the parameters of
- * the logit function, ordered as follows:
- * <ul>
- * <li>Lower bound</li>
- * <li>Higher bound</li>
- * </ul>
- */
- public static class Parametric implements ParametricUnivariateFunction {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public Parametric() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /**
- * Computes the value of the logit at {@code x}.
- *
- * @param x Value for which the function must be computed.
- * @param param Values of lower bound and higher bounds.
- * @return the value of the function.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 2.
- */
- @Override
- public double value(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- return Logit.value(x, param[0], param[1]);
- }
- /**
- * Computes the value of the gradient at {@code x}.
- * The components of the gradient vector are the partial
- * derivatives of the function with respect to each of the
- * <em>parameters</em> (lower bound and higher bound).
- *
- * @param x Value at which the gradient must be computed.
- * @param param Values for lower and higher bounds.
- * @return the gradient vector at {@code x}.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 2.
- */
- @Override
- public double[] gradient(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- final double lo = param[0];
- final double hi = param[1];
- return new double[] { 1 / (lo - x), 1 / (hi - x) };
- }
- /**
- * Validates parameters to ensure they are appropriate for the evaluation of
- * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
- * methods.
- *
- * @param param Values for lower and higher bounds.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 2.
- */
- private void validateParameters(double[] param)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(param);
- MathUtils.checkDimension(param.length, 2);
- }
- }
- /**
- * @param x Value at which to compute the logit.
- * @param lo Lower bound.
- * @param hi Higher bound.
- * @return the value of the logit function at {@code x}.
- * @throws MathIllegalArgumentException if {@code x < lo} or {@code x > hi}.
- */
- private static double value(double x,
- double lo,
- double hi)
- throws MathIllegalArgumentException {
- MathUtils.checkRangeInclusive(x, lo, hi);
- return FastMath.log((x - lo) / (hi - x));
- }
- /** {@inheritDoc}
- * @exception MathIllegalArgumentException if parameter is outside of function domain
- */
- @Override
- public <T extends Derivative<T>> T value(T t)
- throws MathIllegalArgumentException {
- final double x = t.getValue();
- MathUtils.checkRangeInclusive(x, lo, hi);
- double[] f = new double[t.getOrder() + 1];
- // function value
- f[0] = FastMath.log((x - lo) / (hi - x));
- if (Double.isInfinite(f[0])) {
- if (f.length > 1) {
- f[1] = Double.POSITIVE_INFINITY;
- }
- // fill the array with infinities
- // (for x close to lo the signs will flip between -inf and +inf,
- // for x close to hi the signs will always be +inf)
- // this is probably overkill, since the call to compose at the end
- // of the method will transform most infinities into NaN ...
- for (int i = 2; i < f.length; ++i) {
- f[i] = f[i - 2];
- }
- } else {
- // function derivatives
- final double invL = 1.0 / (x - lo);
- double xL = invL;
- final double invH = 1.0 / (hi - x);
- double xH = invH;
- for (int i = 1; i < f.length; ++i) {
- f[i] = xL + xH;
- xL *= -i * invL;
- xH *= i * invH;
- }
- }
- return t.compose(f);
- }
- }