- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.function;
- import org.hipparchus.analysis.ParametricUnivariateFunction;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * <a href="http://en.wikipedia.org/wiki/Generalised_logistic_function">
- * Generalised logistic</a> function.
- *
- */
- public class Logistic implements UnivariateDifferentiableFunction {
- /** Lower asymptote. */
- private final double a;
- /** Upper asymptote. */
- private final double k;
- /** Growth rate. */
- private final double b;
- /** Parameter that affects near which asymptote maximum growth occurs. */
- private final double oneOverN;
- /** Parameter that affects the position of the curve along the ordinate axis. */
- private final double q;
- /** Abscissa of maximum growth. */
- private final double m;
- /** Simple constructor.
- * @param k If {@code b > 0}, value of the function for x going towards +∞.
- * If {@code b < 0}, value of the function for x going towards -∞.
- * @param m Abscissa of maximum growth.
- * @param b Growth rate.
- * @param q Parameter that affects the position of the curve along the
- * ordinate axis.
- * @param a If {@code b > 0}, value of the function for x going towards -∞.
- * If {@code b < 0}, value of the function for x going towards +∞.
- * @param n Parameter that affects near which asymptote the maximum
- * growth occurs.
- * @throws MathIllegalArgumentException if {@code n <= 0}.
- */
- public Logistic(double k,
- double m,
- double b,
- double q,
- double a,
- double n)
- throws MathIllegalArgumentException {
- if (n <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL_BOUND_EXCLUDED,
- n, 0);
- }
- this.k = k;
- this.m = m;
- this.b = b;
- this.q = q;
- this.a = a;
- oneOverN = 1 / n;
- }
- /** {@inheritDoc} */
- @Override
- public double value(double x) {
- return value(m - x, k, b, q, a, oneOverN);
- }
- /**
- * Parametric function where the input array contains the parameters of
- * the {@link Logistic#Logistic(double,double,double,double,double,double)
- * logistic function}, ordered as follows:
- * <ul>
- * <li>k</li>
- * <li>m</li>
- * <li>b</li>
- * <li>q</li>
- * <li>a</li>
- * <li>n</li>
- * </ul>
- */
- public static class Parametric implements ParametricUnivariateFunction {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public Parametric() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /**
- * Computes the value of the sigmoid at {@code x}.
- *
- * @param x Value for which the function must be computed.
- * @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
- * {@code a} and {@code n}.
- * @return the value of the function.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 6.
- * @throws MathIllegalArgumentException if {@code param[5] <= 0}.
- */
- @Override
- public double value(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- return Logistic.value(param[1] - x, param[0],
- param[2], param[3],
- param[4], 1 / param[5]);
- }
- /**
- * Computes the value of the gradient at {@code x}.
- * The components of the gradient vector are the partial
- * derivatives of the function with respect to each of the
- * <em>parameters</em>.
- *
- * @param x Value at which the gradient must be computed.
- * @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
- * {@code a} and {@code n}.
- * @return the gradient vector at {@code x}.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 6.
- * @throws MathIllegalArgumentException if {@code param[5] <= 0}.
- */
- @Override
- public double[] gradient(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- final double b = param[2];
- final double q = param[3];
- final double mMinusX = param[1] - x;
- final double oneOverN = 1 / param[5];
- final double exp = FastMath.exp(b * mMinusX);
- final double qExp = q * exp;
- final double qExp1 = qExp + 1;
- final double factor1 = (param[0] - param[4]) * oneOverN / FastMath.pow(qExp1, oneOverN);
- final double factor2 = -factor1 / qExp1;
- // Components of the gradient.
- final double gk = Logistic.value(mMinusX, 1, b, q, 0, oneOverN);
- final double gm = factor2 * b * qExp;
- final double gb = factor2 * mMinusX * qExp;
- final double gq = factor2 * exp;
- final double ga = Logistic.value(mMinusX, 0, b, q, 1, oneOverN);
- final double gn = factor1 * FastMath.log(qExp1) * oneOverN;
- return new double[] { gk, gm, gb, gq, ga, gn };
- }
- /**
- * Validates parameters to ensure they are appropriate for the evaluation of
- * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
- * methods.
- *
- * @param param Values for {@code k}, {@code m}, {@code b}, {@code q},
- * {@code a} and {@code n}.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 6.
- * @throws MathIllegalArgumentException if {@code param[5] <= 0}.
- */
- private void validateParameters(double[] param)
- throws MathIllegalArgumentException, NullArgumentException {
- MathUtils.checkNotNull(param);
- MathUtils.checkDimension(param.length, 6);
- if (param[5] <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL_BOUND_EXCLUDED,
- param[5], 0);
- }
- }
- }
- /**
- * @param mMinusX {@code m - x}.
- * @param k {@code k}.
- * @param b {@code b}.
- * @param q {@code q}.
- * @param a {@code a}.
- * @param oneOverN {@code 1 / n}.
- * @return the value of the function.
- */
- private static double value(double mMinusX,
- double k,
- double b,
- double q,
- double a,
- double oneOverN) {
- return a + (k - a) / FastMath.pow(1 + q * FastMath.exp(b * mMinusX), oneOverN);
- }
- /** {@inheritDoc}
- */
- @Override
- public <T extends Derivative<T>> T value(T t) {
- return t.negate().add(m).multiply(b).exp().multiply(q).add(1).pow(oneOverN).reciprocal().multiply(k - a).add(a);
- }
- }