Gaussian.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.function;
- import java.util.Arrays;
- import org.hipparchus.analysis.ParametricUnivariateFunction;
- import org.hipparchus.analysis.differentiation.Derivative;
- import org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.Precision;
- /**
- * <a href="http://en.wikipedia.org/wiki/Gaussian_function">
- * Gaussian</a> function.
- *
- */
- public class Gaussian implements UnivariateDifferentiableFunction {
- /** Mean. */
- private final double mean;
- /** Inverse of the standard deviation. */
- private final double is;
- /** Inverse of twice the square of the standard deviation. */
- private final double i2s2;
- /** Normalization factor. */
- private final double norm;
- /**
- * Gaussian with given normalization factor, mean and standard deviation.
- *
- * @param norm Normalization factor.
- * @param mean Mean.
- * @param sigma Standard deviation.
- * @throws MathIllegalArgumentException if {@code sigma <= 0}.
- */
- public Gaussian(double norm,
- double mean,
- double sigma)
- throws MathIllegalArgumentException {
- if (sigma <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL_BOUND_EXCLUDED,
- sigma, 0);
- }
- this.norm = norm;
- this.mean = mean;
- this.is = 1 / sigma;
- this.i2s2 = 0.5 * is * is;
- }
- /**
- * Normalized gaussian with given mean and standard deviation.
- *
- * @param mean Mean.
- * @param sigma Standard deviation.
- * @throws MathIllegalArgumentException if {@code sigma <= 0}.
- */
- public Gaussian(double mean,
- double sigma)
- throws MathIllegalArgumentException {
- this(1 / (sigma * FastMath.sqrt(2 * Math.PI)), mean, sigma);
- }
- /**
- * Normalized gaussian with zero mean and unit standard deviation.
- */
- public Gaussian() {
- this(0, 1);
- }
- /** {@inheritDoc} */
- @Override
- public double value(double x) {
- return value(x - mean, norm, i2s2);
- }
- /**
- * Parametric function where the input array contains the parameters of
- * the Gaussian, ordered as follows:
- * <ul>
- * <li>Norm</li>
- * <li>Mean</li>
- * <li>Standard deviation</li>
- * </ul>
- */
- public static class Parametric implements ParametricUnivariateFunction {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public Parametric() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /**
- * Computes the value of the Gaussian at {@code x}.
- *
- * @param x Value for which the function must be computed.
- * @param param Values of norm, mean and standard deviation.
- * @return the value of the function.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 3.
- * @throws MathIllegalArgumentException if {@code param[2]} is negative.
- */
- @Override
- public double value(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- final double diff = x - param[1];
- final double i2s2 = 1 / (2 * param[2] * param[2]);
- return Gaussian.value(diff, param[0], i2s2);
- }
- /**
- * Computes the value of the gradient at {@code x}.
- * The components of the gradient vector are the partial
- * derivatives of the function with respect to each of the
- * <em>parameters</em> (norm, mean and standard deviation).
- *
- * @param x Value at which the gradient must be computed.
- * @param param Values of norm, mean and standard deviation.
- * @return the gradient vector at {@code x}.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 3.
- * @throws MathIllegalArgumentException if {@code param[2]} is negative.
- */
- @Override
- public double[] gradient(double x, double ... param)
- throws MathIllegalArgumentException, NullArgumentException {
- validateParameters(param);
- final double norm = param[0];
- final double diff = x - param[1];
- final double sigma = param[2];
- final double i2s2 = 1 / (2 * sigma * sigma);
- final double n = Gaussian.value(diff, 1, i2s2);
- final double m = norm * n * 2 * i2s2 * diff;
- final double s = m * diff / sigma;
- return new double[] { n, m, s };
- }
- /**
- * Validates parameters to ensure they are appropriate for the evaluation of
- * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
- * methods.
- *
- * @param param Values of norm, mean and standard deviation.
- * @throws NullArgumentException if {@code param} is {@code null}.
- * @throws MathIllegalArgumentException if the size of {@code param} is
- * not 3.
- * @throws MathIllegalArgumentException if {@code param[2]} is negative.
- */
- private void validateParameters(double[] param)
- throws MathIllegalArgumentException, NullArgumentException {
- if (param == null) {
- throw new NullArgumentException();
- }
- MathUtils.checkDimension(param.length, 3);
- if (param[2] <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL_BOUND_EXCLUDED,
- param[2], 0);
- }
- }
- }
- /**
- * @param xMinusMean {@code x - mean}.
- * @param norm Normalization factor.
- * @param i2s2 Inverse of twice the square of the standard deviation.
- * @return the value of the Gaussian at {@code x}.
- */
- private static double value(double xMinusMean,
- double norm,
- double i2s2) {
- return norm * FastMath.exp(-xMinusMean * xMinusMean * i2s2);
- }
- /** {@inheritDoc}
- */
- @Override
- public <T extends Derivative<T>> T value(T t)
- throws MathIllegalArgumentException {
- final double u = is * (t.getValue() - mean);
- double[] f = new double[t.getOrder() + 1];
- // the nth order derivative of the Gaussian has the form:
- // dn(g(x)/dxn = (norm / s^n) P_n(u) exp(-u^2/2) with u=(x-m)/s
- // where P_n(u) is a degree n polynomial with same parity as n
- // P_0(u) = 1, P_1(u) = -u, P_2(u) = u^2 - 1, P_3(u) = -u^3 + 3 u...
- // the general recurrence relation for P_n is:
- // P_n(u) = P_(n-1)'(u) - u P_(n-1)(u)
- // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
- final double[] p = new double[f.length];
- p[0] = 1;
- final double u2 = u * u;
- double coeff = norm * FastMath.exp(-0.5 * u2);
- if (coeff <= Precision.SAFE_MIN) {
- Arrays.fill(f, 0.0);
- } else {
- f[0] = coeff;
- for (int n = 1; n < f.length; ++n) {
- // update and evaluate polynomial P_n(x)
- double v = 0;
- p[n] = -p[n - 1];
- for (int k = n; k >= 0; k -= 2) {
- v = v * u2 + p[k];
- if (k > 2) {
- p[k - 2] = (k - 1) * p[k - 1] - p[k - 3];
- } else if (k == 2) {
- p[0] = p[1];
- }
- }
- if ((n & 0x1) == 1) {
- v *= u;
- }
- coeff *= is;
- f[n] = coeff * v;
- }
- }
- return t.compose(f);
- }
- }