UnivariateDerivative2.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.analysis.differentiation;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldSinCos;
- import org.hipparchus.util.FieldSinhCosh;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.SinCos;
- import org.hipparchus.util.SinhCosh;
- /** Class representing both the value and the differentials of a function.
- * <p>This class is a stripped-down version of {@link DerivativeStructure}
- * with only one {@link DerivativeStructure#getFreeParameters() free parameter}
- * and {@link DerivativeStructure#getOrder() derivation order} also limited to two.
- * It should have less overhead than {@link DerivativeStructure} in its domain.</p>
- * <p>This class is an implementation of Rall's numbers. Rall's numbers are an
- * extension to the real numbers used throughout mathematical expressions; they hold
- * the derivative together with the value of a function.</p>
- * <p>{@link UnivariateDerivative2} instances can be used directly thanks to
- * the arithmetic operators to the mathematical functions provided as
- * methods by this class (+, -, *, /, %, sin, cos ...).</p>
- * <p>Implementing complex expressions by hand using {@link Derivative}-based
- * classes (or in fact any {@link org.hipparchus.CalculusFieldElement} class) is
- * a tedious and error-prone task but has the advantage of not requiring users
- * to compute the derivatives by themselves and allowing to switch for one
- * derivative implementation to another as they all share the same filed API.</p>
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @see DerivativeStructure
- * @see UnivariateDerivative2
- * @see Gradient
- * @see FieldDerivativeStructure
- * @see FieldUnivariateDerivative2
- * @see FieldUnivariateDerivative2
- * @see FieldGradient
- * @since 1.7
- */
- public class UnivariateDerivative2 extends UnivariateDerivative<UnivariateDerivative2> {
- /** The constant value of π as a {@code UnivariateDerivative2}.
- * @since 2.0
- */
- public static final UnivariateDerivative2 PI = new UnivariateDerivative2(FastMath.PI, 0.0, 0.0);
- /** Serializable UID. */
- private static final long serialVersionUID = 20200520L;
- /** Value of the function. */
- private final double f0;
- /** First derivative of the function. */
- private final double f1;
- /** Second derivative of the function. */
- private final double f2;
- /** Build an instance with values and derivative.
- * @param f0 value of the function
- * @param f1 first derivative of the function
- * @param f2 second derivative of the function
- */
- public UnivariateDerivative2(final double f0, final double f1, final double f2) {
- this.f0 = f0;
- this.f1 = f1;
- this.f2 = f2;
- }
- /** Build an instance from a {@link DerivativeStructure}.
- * @param ds derivative structure
- * @exception MathIllegalArgumentException if either {@code ds} parameters
- * is not 1 or {@code ds} order is not 2
- */
- public UnivariateDerivative2(final DerivativeStructure ds) throws MathIllegalArgumentException {
- MathUtils.checkDimension(ds.getFreeParameters(), 1);
- MathUtils.checkDimension(ds.getOrder(), 2);
- this.f0 = ds.getValue();
- this.f1 = ds.getPartialDerivative(1);
- this.f2 = ds.getPartialDerivative(2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 newInstance(final double value) {
- return new UnivariateDerivative2(value, 0.0, 0.0);
- }
- @Override
- public UnivariateDerivative2 withValue(final double value) {
- return new UnivariateDerivative2(value, f1, f2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 getAddendum() {
- return new UnivariateDerivative2(0, f1, f2);
- }
- /** {@inheritDoc} */
- @Override
- public double getValue() {
- return f0;
- }
- /** {@inheritDoc} */
- @Override
- public double getDerivative(final int n) {
- switch (n) {
- case 0 :
- return f0;
- case 1 :
- return f1;
- case 2 :
- return f2;
- default :
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DERIVATION_ORDER_NOT_ALLOWED, n);
- }
- }
- /** {@inheritDoc} */
- @Override
- public int getOrder() {
- return 2;
- }
- /** Get the first derivative.
- * @return first derivative
- * @see #getValue()
- * @see #getSecondDerivative()
- */
- public double getFirstDerivative() {
- return f1;
- }
- /** Get the second derivative.
- * @return second derivative
- * @see #getValue()
- * @see #getFirstDerivative()
- */
- public double getSecondDerivative() {
- return f2;
- }
- /** {@inheritDoc} */
- @Override
- public DerivativeStructure toDerivativeStructure() {
- return getField().getConversionFactory().build(f0, f1, f2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 add(final UnivariateDerivative2 a) {
- return new UnivariateDerivative2(f0 + a.f0, f1 + a.f1, f2 + a.f2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 subtract(final UnivariateDerivative2 a) {
- return new UnivariateDerivative2(f0 - a.f0, f1 - a.f1, f2 - a.f2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 multiply(final int n) {
- return new UnivariateDerivative2(f0 * n, f1 * n, f2 * n);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 multiply(final double a) {
- return new UnivariateDerivative2(f0 * a, f1 * a, f2 * a);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 multiply(final UnivariateDerivative2 a) {
- return new UnivariateDerivative2(f0 * a.f0,
- MathArrays.linearCombination(f1, a.f0, f0, a.f1),
- MathArrays.linearCombination(f2, a.f0, 2 * f1, a.f1, f0, a.f2));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 square() {
- return new UnivariateDerivative2(f0 * f0, 2 * f0 * f1, 2 * (f0 * f2 + f1 * f1));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 divide(final double a) {
- final double inv1 = 1.0 / a;
- return new UnivariateDerivative2(f0 * inv1, f1 * inv1, f2 * inv1);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 divide(final UnivariateDerivative2 a) {
- final double inv1 = 1.0 / a.f0;
- final double inv2 = inv1 * inv1;
- final double inv3 = inv1 * inv2;
- return new UnivariateDerivative2(f0 * inv1,
- MathArrays.linearCombination(f1, a.f0, -f0, a.f1) * inv2,
- MathArrays.linearCombination(f2, a.f0 * a.f0,
- -2 * f1, a.f0 * a.f1,
- 2 * f0, a.f1 * a.f1,
- -f0, a.f0 * a.f2) * inv3);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 remainder(final UnivariateDerivative2 a) {
- // compute k such that lhs % rhs = lhs - k rhs
- final double rem = FastMath.IEEEremainder(f0, a.f0);
- final double k = FastMath.rint((f0 - rem) / a.f0);
- return new UnivariateDerivative2(rem, f1 - k * a.f1, f2 - k * a.f2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 negate() {
- return new UnivariateDerivative2(-f0, -f1, -f2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 abs() {
- if (Double.doubleToLongBits(f0) < 0) {
- // we use the bits representation to also handle -0.0
- return negate();
- } else {
- return this;
- }
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 copySign(final UnivariateDerivative2 sign) {
- long m = Double.doubleToLongBits(f0);
- long s = Double.doubleToLongBits(sign.f0);
- if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
- return this;
- }
- return negate(); // flip sign
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 copySign(final double sign) {
- long m = Double.doubleToLongBits(f0);
- long s = Double.doubleToLongBits(sign);
- if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
- return this;
- }
- return negate(); // flip sign
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 scalb(final int n) {
- return new UnivariateDerivative2(FastMath.scalb(f0, n), FastMath.scalb(f1, n), FastMath.scalb(f2, n));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 hypot(final UnivariateDerivative2 y) {
- if (Double.isInfinite(f0) || Double.isInfinite(y.f0)) {
- return new UnivariateDerivative2(Double.POSITIVE_INFINITY, 0.0, 0.0);
- } else if (Double.isNaN(f0) || Double.isNaN(y.f0)) {
- return new UnivariateDerivative2(Double.NaN, 0.0, 0.0);
- } else {
- final int expX = getExponent();
- final int expY = y.getExponent();
- if (expX > expY + 27) {
- // y is negligible with respect to x
- return abs();
- } else if (expY > expX + 27) {
- // x is negligible with respect to y
- return y.abs();
- } else {
- // find an intermediate scale to avoid both overflow and underflow
- final int middleExp = (expX + expY) / 2;
- // scale parameters without losing precision
- final UnivariateDerivative2 scaledX = scalb(-middleExp);
- final UnivariateDerivative2 scaledY = y.scalb(-middleExp);
- // compute scaled hypotenuse
- final UnivariateDerivative2 scaledH =
- scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).sqrt();
- // remove scaling
- return scaledH.scalb(middleExp);
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 reciprocal() {
- final double inv1 = 1.0 / f0;
- final double inv2 = inv1 * inv1;
- final double inv3 = inv1 * inv2;
- return new UnivariateDerivative2(inv1, -f1 * inv2, MathArrays.linearCombination(2 * f1, f1, -f0, f2) * inv3);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 compose(final double... f) {
- MathUtils.checkDimension(f.length, getOrder() + 1);
- return new UnivariateDerivative2(f[0],
- f[1] * f1,
- MathArrays.linearCombination(f[1], f2, f[2], f1 * f1));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 sqrt() {
- final double s0 = FastMath.sqrt(f0);
- final double s0twice = 2. * s0;
- final double s1 = f1 / s0twice;
- final double s2 = (f2 - 2. * s1 * s1) / s0twice;
- return new UnivariateDerivative2(s0, s1, s2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 cbrt() {
- final double c = FastMath.cbrt(f0);
- final double c2 = c * c;
- return compose(c, 1 / (3 * c2), -1 / (4.5 * c2 * f0));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 rootN(final int n) {
- if (n == 2) {
- return sqrt();
- } else if (n == 3) {
- return cbrt();
- } else {
- final double r = FastMath.pow(f0, 1.0 / n);
- final double z = n * FastMath.pow(r, n - 1);
- return compose(r, 1 / z, (1 - n) / (z * z * r));
- }
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2Field getField() {
- return UnivariateDerivative2Field.getInstance();
- }
- /** Compute a<sup>x</sup> where a is a double and x a {@link UnivariateDerivative2}
- * @param a number to exponentiate
- * @param x power to apply
- * @return a<sup>x</sup>
- */
- public static UnivariateDerivative2 pow(final double a, final UnivariateDerivative2 x) {
- if (a == 0) {
- return x.getField().getZero();
- } else {
- final double aX = FastMath.pow(a, x.f0);
- final double lnA = FastMath.log(a);
- final double aXlnA = aX * lnA;
- return new UnivariateDerivative2(aX, aXlnA * x.f1, aXlnA * (x.f1 * x.f1 * lnA + x.f2));
- }
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 pow(final double p) {
- if (p == 0) {
- return getField().getOne();
- } else {
- final double f0Pm2 = FastMath.pow(f0, p - 2);
- final double f0Pm1 = f0Pm2 * f0;
- final double f0P = f0Pm1 * f0;
- return compose(f0P, p * f0Pm1, p * (p - 1) * f0Pm2);
- }
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 pow(final int n) {
- if (n == 0) {
- return getField().getOne();
- } else {
- final double f0Nm2 = FastMath.pow(f0, n - 2);
- final double f0Nm1 = f0Nm2 * f0;
- final double f0N = f0Nm1 * f0;
- return compose(f0N, n * f0Nm1, n * (n - 1) * f0Nm2);
- }
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 exp() {
- final double exp = FastMath.exp(f0);
- return compose(exp, exp, exp);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 expm1() {
- final double exp = FastMath.exp(f0);
- final double expM1 = FastMath.expm1(f0);
- return compose(expM1, exp, exp);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 log() {
- final double inv = 1 / f0;
- return compose(FastMath.log(f0), inv, -inv * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 log1p() {
- final double inv = 1 / (1 + f0);
- return compose(FastMath.log1p(f0), inv, -inv * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 log10() {
- final double invF0 = 1 / f0;
- final double inv = invF0 / FastMath.log(10.0);
- return compose(FastMath.log10(f0), inv, -inv * invF0);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 cos() {
- final SinCos sinCos = FastMath.sinCos(f0);
- return compose(sinCos.cos(), -sinCos.sin(), -sinCos.cos());
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 sin() {
- final SinCos sinCos = FastMath.sinCos(f0);
- return compose(sinCos.sin(), sinCos.cos(), -sinCos.sin());
- }
- /** {@inheritDoc} */
- @Override
- public FieldSinCos<UnivariateDerivative2> sinCos() {
- final SinCos sinCos = FastMath.sinCos(f0);
- return new FieldSinCos<>(compose(sinCos.sin(), sinCos.cos(), -sinCos.sin()),
- compose(sinCos.cos(), -sinCos.sin(), -sinCos.cos()));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 tan() {
- final double tan = FastMath.tan(f0);
- final double sec2 = 1 + tan * tan;
- return compose(tan, sec2, 2 * sec2 * tan);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 acos() {
- final double inv = 1.0 / (1 - f0 * f0);
- final double mS = -FastMath.sqrt(inv);
- return compose(FastMath.acos(f0), mS, mS * f0 * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 asin() {
- final double inv = 1.0 / (1 - f0 * f0);
- final double s = FastMath.sqrt(inv);
- return compose(FastMath.asin(f0), s, s * f0 * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 atan() {
- final double inv = 1 / (1 + f0 * f0);
- return compose(FastMath.atan(f0), inv, -2 * f0 * inv * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 atan2(final UnivariateDerivative2 x) {
- final double x2 = x.f0 * x.f0;
- final double f02 = f0 + f0;
- final double inv = 1.0 / (f0 * f0 + x2);
- final double atan0 = FastMath.atan2(f0, x.f0);
- final double atan1 = MathArrays.linearCombination(x.f0, f1, -x.f1, f0) * inv;
- final double c = MathArrays.linearCombination(f2, x2,
- -2 * f1, x.f0 * x.f1,
- f02, x.f1 * x.f1,
- -f0, x.f0 * x.f2) * inv;
- return new UnivariateDerivative2(atan0, atan1, (c - f02 * atan1 * atan1) / x.f0);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 cosh() {
- final double c = FastMath.cosh(f0);
- final double s = FastMath.sinh(f0);
- return compose(c, s, c);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 sinh() {
- final double c = FastMath.cosh(f0);
- final double s = FastMath.sinh(f0);
- return compose(s, c, s);
- }
- /** {@inheritDoc} */
- @Override
- public FieldSinhCosh<UnivariateDerivative2> sinhCosh() {
- final SinhCosh sinhCosh = FastMath.sinhCosh(f0);
- return new FieldSinhCosh<>(compose(sinhCosh.sinh(), sinhCosh.cosh(), sinhCosh.sinh()),
- compose(sinhCosh.cosh(), sinhCosh.sinh(), sinhCosh.cosh()));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 tanh() {
- final double tanh = FastMath.tanh(f0);
- final double sech2 = 1 - tanh * tanh;
- return compose(tanh, sech2, -2 * sech2 * tanh);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 acosh() {
- final double inv = 1 / (f0 * f0 - 1);
- final double s = FastMath.sqrt(inv);
- return compose(FastMath.acosh(f0), s, -f0 * s * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 asinh() {
- final double inv = 1 / (f0 * f0 + 1);
- final double s = FastMath.sqrt(inv);
- return compose(FastMath.asinh(f0), s, -f0 * s * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 atanh() {
- final double inv = 1 / (1 - f0 * f0);
- return compose(FastMath.atanh(f0), inv, 2 * f0 * inv * inv);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 toDegrees() {
- return new UnivariateDerivative2(FastMath.toDegrees(f0), FastMath.toDegrees(f1), FastMath.toDegrees(f2));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 toRadians() {
- return new UnivariateDerivative2(FastMath.toRadians(f0), FastMath.toRadians(f1), FastMath.toRadians(f2));
- }
- /** Evaluate Taylor expansion a univariate derivative.
- * @param delta parameter offset Δx
- * @return value of the Taylor expansion at x + Δx
- */
- public double taylor(final double delta) {
- return f0 + delta * (f1 + 0.5 * delta * f2);
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final UnivariateDerivative2[] a, final UnivariateDerivative2[] b) {
- // extract values and derivatives
- final int n = a.length;
- final double[] a0 = new double[n];
- final double[] b0 = new double[n];
- final double[] a1 = new double[2 * n];
- final double[] b1 = new double[2 * n];
- final double[] a2 = new double[3 * n];
- final double[] b2 = new double[3 * n];
- for (int i = 0; i < n; ++i) {
- final UnivariateDerivative2 ai = a[i];
- final UnivariateDerivative2 bi = b[i];
- a0[i] = ai.f0;
- b0[i] = bi.f0;
- a1[2 * i] = ai.f0;
- a1[2 * i + 1] = ai.f1;
- b1[2 * i] = bi.f1;
- b1[2 * i + 1] = bi.f0;
- a2[3 * i] = ai.f0;
- a2[3 * i + 1] = ai.f1 + ai.f1;
- a2[3 * i + 2] = ai.f2;
- b2[3 * i] = bi.f2;
- b2[3 * i + 1] = bi.f1;
- b2[3 * i + 2] = bi.f0;
- }
- return new UnivariateDerivative2(MathArrays.linearCombination(a0, b0),
- MathArrays.linearCombination(a1, b1),
- MathArrays.linearCombination(a2, b2));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final double[] a, final UnivariateDerivative2[] b) {
- // extract values and derivatives
- final int n = b.length;
- final double[] b0 = new double[n];
- final double[] b1 = new double[n];
- final double[] b2 = new double[n];
- for (int i = 0; i < n; ++i) {
- b0[i] = b[i].f0;
- b1[i] = b[i].f1;
- b2[i] = b[i].f2;
- }
- return new UnivariateDerivative2(MathArrays.linearCombination(a, b0),
- MathArrays.linearCombination(a, b1),
- MathArrays.linearCombination(a, b2));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final UnivariateDerivative2 a1, final UnivariateDerivative2 b1,
- final UnivariateDerivative2 a2, final UnivariateDerivative2 b2) {
- return new UnivariateDerivative2(MathArrays.linearCombination(a1.f0, b1.f0,
- a2.f0, b2.f0),
- MathArrays.linearCombination(a1.f0, b1.f1,
- a1.f1, b1.f0,
- a2.f0, b2.f1,
- a2.f1, b2.f0),
- MathArrays.linearCombination(new double[] {
- a1.f0, 2 * a1.f1, a1.f2,
- a2.f0, 2 * a2.f1, a2.f2
- }, new double[] {
- b1.f2, b1.f1, b1.f0,
- b2.f2, b2.f1, b2.f0
- }));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final double a1, final UnivariateDerivative2 b1,
- final double a2, final UnivariateDerivative2 b2) {
- return new UnivariateDerivative2(MathArrays.linearCombination(a1, b1.f0,
- a2, b2.f0),
- MathArrays.linearCombination(a1, b1.f1,
- a2, b2.f1),
- MathArrays.linearCombination(a1, b1.f2,
- a2, b2.f2));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final UnivariateDerivative2 a1, final UnivariateDerivative2 b1,
- final UnivariateDerivative2 a2, final UnivariateDerivative2 b2,
- final UnivariateDerivative2 a3, final UnivariateDerivative2 b3) {
- return new UnivariateDerivative2(MathArrays.linearCombination(a1.f0, b1.f0,
- a2.f0, b2.f0,
- a3.f0, b3.f0),
- MathArrays.linearCombination(new double[] {
- a1.f0, a1.f1,
- a2.f0, a2.f1,
- a3.f0, a3.f1
- }, new double[] {
- b1.f1, b1.f0,
- b2.f1, b2.f0,
- b3.f1, b3.f0
- }),
- MathArrays.linearCombination(new double[] {
- a1.f0, 2 * a1.f1, a1.f2,
- a2.f0, 2 * a2.f1, a2.f2,
- a3.f0, 2 * a3.f1, a3.f2
- }, new double[] {
- b1.f2, b1.f1, b1.f0,
- b2.f2, b2.f1, b2.f0,
- b3.f2, b3.f1, b3.f0
- }));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final double a1, final UnivariateDerivative2 b1,
- final double a2, final UnivariateDerivative2 b2,
- final double a3, final UnivariateDerivative2 b3) {
- return new UnivariateDerivative2(MathArrays.linearCombination(a1, b1.f0,
- a2, b2.f0,
- a3, b3.f0),
- MathArrays.linearCombination(a1, b1.f1,
- a2, b2.f1,
- a3, b3.f1),
- MathArrays.linearCombination(a1, b1.f2,
- a2, b2.f2,
- a3, b3.f2));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final UnivariateDerivative2 a1, final UnivariateDerivative2 b1,
- final UnivariateDerivative2 a2, final UnivariateDerivative2 b2,
- final UnivariateDerivative2 a3, final UnivariateDerivative2 b3,
- final UnivariateDerivative2 a4, final UnivariateDerivative2 b4) {
- return new UnivariateDerivative2(MathArrays.linearCombination(a1.f0, b1.f0,
- a2.f0, b2.f0,
- a3.f0, b3.f0,
- a4.f0, b4.f0),
- MathArrays.linearCombination(new double[] {
- a1.f0, a1.f1,
- a2.f0, a2.f1,
- a3.f0, a3.f1,
- a4.f0, a4.f1
- }, new double[] {
- b1.f1, b1.f0,
- b2.f1, b2.f0,
- b3.f1, b3.f0,
- b4.f1, b4.f0
- }),
- MathArrays.linearCombination(new double[] {
- a1.f0, 2 * a1.f1, a1.f2,
- a2.f0, 2 * a2.f1, a2.f2,
- a3.f0, 2 * a3.f1, a3.f2,
- a4.f0, 2 * a4.f1, a4.f2
- }, new double[] {
- b1.f2, b1.f1, b1.f0,
- b2.f2, b2.f1, b2.f0,
- b3.f2, b3.f1, b3.f0,
- b4.f2, b4.f1, b4.f0
- }));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 linearCombination(final double a1, final UnivariateDerivative2 b1,
- final double a2, final UnivariateDerivative2 b2,
- final double a3, final UnivariateDerivative2 b3,
- final double a4, final UnivariateDerivative2 b4) {
- return new UnivariateDerivative2(MathArrays.linearCombination(a1, b1.f0,
- a2, b2.f0,
- a3, b3.f0,
- a4, b4.f0),
- MathArrays.linearCombination(a1, b1.f1,
- a2, b2.f1,
- a3, b3.f1,
- a4, b4.f1),
- MathArrays.linearCombination(a1, b1.f2,
- a2, b2.f2,
- a3, b3.f2,
- a4, b4.f2));
- }
- /** {@inheritDoc} */
- @Override
- public UnivariateDerivative2 getPi() {
- return PI;
- }
- /** Test for the equality of two univariate derivatives.
- * <p>
- * univariate derivatives are considered equal if they have the same derivatives.
- * </p>
- * @param other Object to test for equality to this
- * @return true if two univariate derivatives are equal
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof UnivariateDerivative2) {
- final UnivariateDerivative2 rhs = (UnivariateDerivative2) other;
- return f0 == rhs.f0 && f1 == rhs.f1 && f2 == rhs.f2;
- }
- return false;
- }
- /** Get a hashCode for the univariate derivative.
- * @return a hash code value for this object
- */
- @Override
- public int hashCode() {
- return 317 - 41 * Double.hashCode(f0) + 57 * Double.hashCode(f1) - 103 * Double.hashCode(f2);
- }
- /** {@inheritDoc}
- * <p>
- * Comparison performed considering that derivatives are intrinsically linked to monomials in the corresponding
- * Taylor expansion and that the higher the degree, the smaller the term.
- * </p>
- * @since 3.0
- */
- @Override
- public int compareTo(final UnivariateDerivative2 o) {
- final int cF0 = Double.compare(f0, o.getReal());
- if (cF0 == 0) {
- final int cF1 = Double.compare(f1, o.getFirstDerivative());
- if (cF1 == 0) {
- return Double.compare(f2, o.getSecondDerivative());
- } else {
- return cF1;
- }
- } else {
- return cF0;
- }
- }
- }