GradientFunction.java

  1. /*
  2.  * Licensed to the Apache Software Foundation (ASF) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      https://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */

  17. /*
  18.  * This is not the original file distributed by the Apache Software Foundation
  19.  * It has been modified by the Hipparchus project
  20.  */
  21. package org.hipparchus.analysis.differentiation;

  22. import org.hipparchus.analysis.MultivariateVectorFunction;

  23. /** Class representing the gradient of a multivariate function.
  24.  * <p>
  25.  * The vectorial components of the function represent the derivatives
  26.  * with respect to each function parameters.
  27.  * </p>
  28.  */
  29. public class GradientFunction implements MultivariateVectorFunction {

  30.     /** Underlying real-valued function. */
  31.     private final MultivariateDifferentiableFunction f;

  32.     /** Simple constructor.
  33.      * @param f underlying real-valued function
  34.      */
  35.     public GradientFunction(final MultivariateDifferentiableFunction f) {
  36.         this.f = f;
  37.     }

  38.     /** {@inheritDoc} */
  39.     @Override
  40.     public double[] value(double[] point) {

  41.         // set up parameters
  42.         final DSFactory factory = new DSFactory(point.length, 1);
  43.         final DerivativeStructure[] dsX = new DerivativeStructure[point.length];
  44.         for (int i = 0; i < point.length; ++i) {
  45.             dsX[i] = factory.variable(i, point[i]);
  46.         }

  47.         // compute the derivatives
  48.         final DerivativeStructure dsY = f.value(dsX);

  49.         // extract the gradient
  50.         final double[] y = new double[point.length];
  51.         final int[] orders = new int[point.length];
  52.         for (int i = 0; i < point.length; ++i) {
  53.             orders[i] = 1;
  54.             y[i] = dsY.getPartialDerivative(orders);
  55.             orders[i] = 0;
  56.         }

  57.         return y;

  58.     }

  59. }