FiniteDifferencesDifferentiator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.analysis.differentiation;
- import java.io.Serializable;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.analysis.UnivariateMatrixFunction;
- import org.hipparchus.analysis.UnivariateVectorFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /** Univariate functions differentiator using finite differences.
- * <p>
- * This class creates some wrapper objects around regular
- * {@link UnivariateFunction univariate functions} (or {@link
- * UnivariateVectorFunction univariate vector functions} or {@link
- * UnivariateMatrixFunction univariate matrix functions}). These
- * wrapper objects compute derivatives in addition to function
- * values.
- * </p>
- * <p>
- * The wrapper objects work by calling the underlying function on
- * a sampling grid around the current point and performing polynomial
- * interpolation. A finite differences scheme with n points is
- * theoretically able to compute derivatives up to order n-1, but
- * it is generally better to have a slight margin. The step size must
- * also be small enough in order for the polynomial approximation to
- * be good in the current point neighborhood, but it should not be too
- * small because numerical instability appears quickly (there are several
- * differences of close points). Choosing the number of points and
- * the step size is highly problem dependent.
- * </p>
- * <p>
- * As an example of good and bad settings, lets consider the quintic
- * polynomial function {@code f(x) = (x-1)*(x-0.5)*x*(x+0.5)*(x+1)}.
- * Since it is a polynomial, finite differences with at least 6 points
- * should theoretically recover the exact same polynomial and hence
- * compute accurate derivatives for any order. However, due to numerical
- * errors, we get the following results for a 7 points finite differences
- * for abscissae in the [-10, 10] range:
- * <ul>
- * <li>step size = 0.25, second order derivative error about 9.97e-10</li>
- * <li>step size = 0.25, fourth order derivative error about 5.43e-8</li>
- * <li>step size = 1.0e-6, second order derivative error about 148</li>
- * <li>step size = 1.0e-6, fourth order derivative error about 6.35e+14</li>
- * </ul>
- * <p>
- * This example shows that the small step size is really bad, even simply
- * for second order derivative!</p>
- *
- */
- public class FiniteDifferencesDifferentiator
- implements UnivariateFunctionDifferentiator, UnivariateVectorFunctionDifferentiator,
- UnivariateMatrixFunctionDifferentiator, Serializable {
- /** Serializable UID. */
- private static final long serialVersionUID = 20120917L;
- /** Number of points to use. */
- private final int nbPoints;
- /** Step size. */
- private final double stepSize;
- /** Half sample span. */
- private final double halfSampleSpan;
- /** Lower bound for independent variable. */
- private final double tMin;
- /** Upper bound for independent variable. */
- private final double tMax;
- /**
- * Build a differentiator with number of points and step size when independent variable is unbounded.
- * <p>
- * Beware that wrong settings for the finite differences differentiator
- * can lead to highly unstable and inaccurate results, especially for
- * high derivation orders. Using very small step sizes is often a
- * <em>bad</em> idea.
- * </p>
- * @param nbPoints number of points to use
- * @param stepSize step size (gap between each point)
- * @exception MathIllegalArgumentException if {@code stepsize <= 0} (note that
- * {@link MathIllegalArgumentException} extends {@link MathIllegalArgumentException})
- * @exception MathIllegalArgumentException {@code nbPoint <= 1}
- */
- public FiniteDifferencesDifferentiator(final int nbPoints, final double stepSize)
- throws MathIllegalArgumentException {
- this(nbPoints, stepSize, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);
- }
- /**
- * Build a differentiator with number of points and step size when independent variable is bounded.
- * <p>
- * When the independent variable is bounded (tLower < t < tUpper), the sampling
- * points used for differentiation will be adapted to ensure the constraint holds
- * even near the boundaries. This means the sample will not be centered anymore in
- * these cases. At an extreme case, computing derivatives exactly at the lower bound
- * will lead the sample to be entirely on the right side of the derivation point.
- * </p>
- * <p>
- * Note that the boundaries are considered to be excluded for function evaluation.
- * </p>
- * <p>
- * Beware that wrong settings for the finite differences differentiator
- * can lead to highly unstable and inaccurate results, especially for
- * high derivation orders. Using very small step sizes is often a
- * <em>bad</em> idea.
- * </p>
- * @param nbPoints number of points to use
- * @param stepSize step size (gap between each point)
- * @param tLower lower bound for independent variable (may be {@code Double.NEGATIVE_INFINITY}
- * if there are no lower bounds)
- * @param tUpper upper bound for independent variable (may be {@code Double.POSITIVE_INFINITY}
- * if there are no upper bounds)
- * @exception MathIllegalArgumentException if {@code stepsize <= 0} (note that
- * {@link MathIllegalArgumentException} extends {@link MathIllegalArgumentException})
- * @exception MathIllegalArgumentException {@code nbPoint <= 1}
- * @exception MathIllegalArgumentException {@code stepSize * (nbPoints - 1) >= tUpper - tLower}
- */
- public FiniteDifferencesDifferentiator(final int nbPoints, final double stepSize,
- final double tLower, final double tUpper)
- throws MathIllegalArgumentException {
- if (nbPoints <= 1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- stepSize, 1);
- }
- this.nbPoints = nbPoints;
- if (stepSize <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL_BOUND_EXCLUDED,
- stepSize, 0);
- }
- this.stepSize = stepSize;
- halfSampleSpan = 0.5 * stepSize * (nbPoints - 1);
- if (2 * halfSampleSpan >= tUpper - tLower) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE_BOUND_EXCLUDED,
- 2 * halfSampleSpan, tUpper - tLower);
- }
- final double safety = FastMath.ulp(halfSampleSpan);
- this.tMin = tLower + halfSampleSpan + safety;
- this.tMax = tUpper - halfSampleSpan - safety;
- }
- /**
- * Get the number of points to use.
- * @return number of points to use
- */
- public int getNbPoints() {
- return nbPoints;
- }
- /**
- * Get the step size.
- * @return step size
- */
- public double getStepSize() {
- return stepSize;
- }
- /**
- * Evaluate derivatives from a sample.
- * <p>
- * Evaluation is done using divided differences.
- * </p>
- * @param t evaluation abscissa value and derivatives
- * @param t0 first sample point abscissa
- * @param y function values sample {@code y[i] = f(t[i]) = f(t0 + i * stepSize)}
- * @param <T> the type of the field elements
- * @return value and derivatives at {@code t}
- * @exception MathIllegalArgumentException if the requested derivation order
- * is larger or equal to the number of points
- */
- private <T extends Derivative<T>> T evaluate(final T t, final double t0, final double[] y)
- throws MathIllegalArgumentException {
- // create divided differences diagonal arrays
- final double[] top = new double[nbPoints];
- final double[] bottom = new double[nbPoints];
- for (int i = 0; i < nbPoints; ++i) {
- // update the bottom diagonal of the divided differences array
- bottom[i] = y[i];
- for (int j = 1; j <= i; ++j) {
- bottom[i - j] = (bottom[i - j + 1] - bottom[i - j]) / (j * stepSize);
- }
- // update the top diagonal of the divided differences array
- top[i] = bottom[0];
- }
- // evaluate interpolation polynomial (represented by top diagonal) at t
- T interpolation = t.getField().getZero();
- T monomial = null;
- for (int i = 0; i < nbPoints; ++i) {
- if (i == 0) {
- // start with monomial(t) = 1
- monomial = t.getField().getOne();
- } else {
- // monomial(t) = (t - t0) * (t - t1) * ... * (t - t(i-1))
- final T deltaX = t.subtract(t0 + (i - 1) * stepSize);
- monomial = monomial.multiply(deltaX);
- }
- interpolation = interpolation.add(monomial.multiply(top[i]));
- }
- return interpolation;
- }
- /** {@inheritDoc}
- * <p>The returned object cannot compute derivatives to arbitrary orders. The
- * value function will throw a {@link MathIllegalArgumentException} if the requested
- * derivation order is larger or equal to the number of points.
- * </p>
- */
- @Override
- public UnivariateDifferentiableFunction differentiate(final UnivariateFunction function) {
- return new UnivariateDifferentiableFunction() {
- /** {@inheritDoc} */
- @Override
- public double value(final double x) throws MathIllegalArgumentException {
- return function.value(x);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends Derivative<T>> T value(T t)
- throws MathIllegalArgumentException {
- // check we can achieve the requested derivation order with the sample
- if (t.getOrder() >= nbPoints) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE_BOUND_EXCLUDED,
- t.getOrder(), nbPoints);
- }
- // compute sample position, trying to be centered if possible
- final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
- // compute sample points
- final double[] y = new double[nbPoints];
- for (int i = 0; i < nbPoints; ++i) {
- y[i] = function.value(t0 + i * stepSize);
- }
- // evaluate derivatives
- return evaluate(t, t0, y);
- }
- };
- }
- /** {@inheritDoc}
- * <p>The returned object cannot compute derivatives to arbitrary orders. The
- * value function will throw a {@link MathIllegalArgumentException} if the requested
- * derivation order is larger or equal to the number of points.
- * </p>
- */
- @Override
- public UnivariateDifferentiableVectorFunction differentiate(final UnivariateVectorFunction function) {
- return new UnivariateDifferentiableVectorFunction() {
- /** {@inheritDoc} */
- @Override
- public double[]value(final double x) throws MathIllegalArgumentException {
- return function.value(x);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends Derivative<T>> T[] value(T t)
- throws MathIllegalArgumentException {
- // check we can achieve the requested derivation order with the sample
- if (t.getOrder() >= nbPoints) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE_BOUND_EXCLUDED,
- t.getOrder(), nbPoints);
- }
- // compute sample position, trying to be centered if possible
- final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
- // compute sample points
- double[][] y = null;
- for (int i = 0; i < nbPoints; ++i) {
- final double[] v = function.value(t0 + i * stepSize);
- if (i == 0) {
- y = new double[v.length][nbPoints];
- }
- for (int j = 0; j < v.length; ++j) {
- y[j][i] = v[j];
- }
- }
- // evaluate derivatives
- final T[] value = MathArrays.buildArray(t.getField(), y.length);
- for (int j = 0; j < value.length; ++j) {
- value[j] = evaluate(t, t0, y[j]);
- }
- return value;
- }
- };
- }
- /** {@inheritDoc}
- * <p>The returned object cannot compute derivatives to arbitrary orders. The
- * value function will throw a {@link MathIllegalArgumentException} if the requested
- * derivation order is larger or equal to the number of points.
- * </p>
- */
- @Override
- public UnivariateDifferentiableMatrixFunction differentiate(final UnivariateMatrixFunction function) {
- return new UnivariateDifferentiableMatrixFunction() {
- /** {@inheritDoc} */
- @Override
- public double[][] value(final double x) throws MathIllegalArgumentException {
- return function.value(x);
- }
- /** {@inheritDoc} */
- @Override
- public <T extends Derivative<T>> T[][] value(T t)
- throws MathIllegalArgumentException {
- // check we can achieve the requested derivation order with the sample
- if (t.getOrder() >= nbPoints) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE_BOUND_EXCLUDED,
- t.getOrder(), nbPoints);
- }
- // compute sample position, trying to be centered if possible
- final double t0 = FastMath.max(FastMath.min(t.getValue(), tMax), tMin) - halfSampleSpan;
- // compute sample points
- double[][][] y = null;
- for (int i = 0; i < nbPoints; ++i) {
- final double[][] v = function.value(t0 + i * stepSize);
- if (i == 0) {
- y = new double[v.length][v[0].length][nbPoints];
- }
- for (int j = 0; j < v.length; ++j) {
- for (int k = 0; k < v[j].length; ++k) {
- y[j][k][i] = v[j][k];
- }
- }
- }
- // evaluate derivatives
- final T[][] value = MathArrays.buildArray(t.getField(), y.length, y[0].length);
- for (int j = 0; j < value.length; ++j) {
- for (int k = 0; k < y[j].length; ++k) {
- value[j][k] = evaluate(t, t0, y[j][k]);
- }
- }
- return value;
- }
- };
- }
- }