SumOfClusterVariances.java

  1. /*
  2.  * Licensed to the Apache Software Foundation (ASF) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      https://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */

  17. /*
  18.  * This is not the original file distributed by the Apache Software Foundation
  19.  * It has been modified by the Hipparchus project
  20.  */

  21. package org.hipparchus.clustering.evaluation;

  22. import java.util.List;

  23. import org.hipparchus.clustering.Cluster;
  24. import org.hipparchus.clustering.Clusterable;
  25. import org.hipparchus.clustering.distance.DistanceMeasure;
  26. import org.hipparchus.stat.descriptive.moment.Variance;

  27. /**
  28.  * Computes the sum of intra-cluster distance variances according to the formula:
  29.  * \] score = \sum\limits_{i=1}^n \sigma_i^2 \]
  30.  * where n is the number of clusters and \( \sigma_i^2 \) is the variance of
  31.  * intra-cluster distances of cluster \( c_i \).
  32.  *
  33.  * @param <T> the type of the clustered points
  34.  */
  35. public class SumOfClusterVariances<T extends Clusterable> extends ClusterEvaluator<T> {

  36.     /** Simple constructor.
  37.      * @param measure the distance measure to use
  38.      */
  39.     public SumOfClusterVariances(final DistanceMeasure measure) {
  40.         super(measure);
  41.     }

  42.     /** {@inheritDoc} */
  43.     @Override
  44.     public double score(final List<? extends Cluster<T>> clusters) {
  45.         double varianceSum = 0.0;
  46.         for (final Cluster<T> cluster : clusters) {
  47.             if (!cluster.getPoints().isEmpty()) {

  48.                 final Clusterable center = centroidOf(cluster);

  49.                 // compute the distance variance of the current cluster
  50.                 final Variance stat = new Variance();
  51.                 for (final T point : cluster.getPoints()) {
  52.                     stat.increment(distance(point, center));
  53.                 }
  54.                 varianceSum += stat.getResult();

  55.             }
  56.         }
  57.         return varianceSum;
  58.     }

  59. }