SumOfClusterVariances.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.clustering.evaluation;
- import java.util.List;
- import org.hipparchus.clustering.Cluster;
- import org.hipparchus.clustering.Clusterable;
- import org.hipparchus.clustering.distance.DistanceMeasure;
- import org.hipparchus.stat.descriptive.moment.Variance;
- /**
- * Computes the sum of intra-cluster distance variances according to the formula:
- * \] score = \sum\limits_{i=1}^n \sigma_i^2 \]
- * where n is the number of clusters and \( \sigma_i^2 \) is the variance of
- * intra-cluster distances of cluster \( c_i \).
- *
- * @param <T> the type of the clustered points
- */
- public class SumOfClusterVariances<T extends Clusterable> extends ClusterEvaluator<T> {
- /** Simple constructor.
- * @param measure the distance measure to use
- */
- public SumOfClusterVariances(final DistanceMeasure measure) {
- super(measure);
- }
- /** {@inheritDoc} */
- @Override
- public double score(final List<? extends Cluster<T>> clusters) {
- double varianceSum = 0.0;
- for (final Cluster<T> cluster : clusters) {
- if (!cluster.getPoints().isEmpty()) {
- final Clusterable center = centroidOf(cluster);
- // compute the distance variance of the current cluster
- final Variance stat = new Variance();
- for (final T point : cluster.getPoints()) {
- stat.increment(distance(point, center));
- }
- varianceSum += stat.getResult();
- }
- }
- return varianceSum;
- }
- }