ClusterEvaluator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.clustering.evaluation;
- import java.util.List;
- import org.hipparchus.clustering.CentroidCluster;
- import org.hipparchus.clustering.Cluster;
- import org.hipparchus.clustering.Clusterable;
- import org.hipparchus.clustering.DoublePoint;
- import org.hipparchus.clustering.distance.DistanceMeasure;
- import org.hipparchus.clustering.distance.EuclideanDistance;
- /**
- * Base class for cluster evaluation methods.
- *
- * @param <T> type of the clustered points
- */
- public abstract class ClusterEvaluator<T extends Clusterable> {
- /** The distance measure to use when evaluating the cluster. */
- private final DistanceMeasure measure;
- /**
- * Creates a new cluster evaluator with an {@link EuclideanDistance}
- * as distance measure.
- */
- public ClusterEvaluator() {
- this(new EuclideanDistance());
- }
- /**
- * Creates a new cluster evaluator with the given distance measure.
- * @param measure the distance measure to use
- */
- public ClusterEvaluator(final DistanceMeasure measure) {
- this.measure = measure;
- }
- /**
- * Computes the evaluation score for the given list of clusters.
- * @param clusters the clusters to evaluate
- * @return the computed score
- */
- public abstract double score(List<? extends Cluster<T>> clusters);
- /**
- * Returns whether the first evaluation score is considered to be better
- * than the second one by this evaluator.
- * <p>
- * Specific implementations shall override this method if the returned scores
- * do not follow the same ordering, i.e. smaller score is better.
- *
- * @param score1 the first score
- * @param score2 the second score
- * @return {@code true} if the first score is considered to be better, {@code false} otherwise
- */
- public boolean isBetterScore(double score1, double score2) {
- return score1 < score2;
- }
- /**
- * Calculates the distance between two {@link Clusterable} instances
- * with the configured {@link DistanceMeasure}.
- *
- * @param p1 the first clusterable
- * @param p2 the second clusterable
- * @return the distance between the two clusterables
- */
- protected double distance(final Clusterable p1, final Clusterable p2) {
- return measure.compute(p1.getPoint(), p2.getPoint());
- }
- /**
- * Computes the centroid for a cluster.
- *
- * @param cluster the cluster
- * @return the computed centroid for the cluster,
- * or {@code null} if the cluster does not contain any points
- */
- protected Clusterable centroidOf(final Cluster<T> cluster) {
- final List<T> points = cluster.getPoints();
- if (points.isEmpty()) {
- return null;
- }
- // in case the cluster is of type CentroidCluster, no need to compute the centroid
- if (cluster instanceof CentroidCluster) {
- return ((CentroidCluster<T>) cluster).getCenter();
- }
- final int dimension = points.get(0).getPoint().length;
- final double[] centroid = new double[dimension];
- for (final T p : points) {
- final double[] point = p.getPoint();
- for (int i = 0; i < centroid.length; i++) {
- centroid[i] += point[i];
- }
- }
- for (int i = 0; i < centroid.length; i++) {
- centroid[i] /= points.size();
- }
- return new DoublePoint(centroid);
- }
- }