1 /*
2 * Licensed to the Apache Software Foundation (ASF) under one or more
3 * contributor license agreements. See the NOTICE file distributed with
4 * this work for additional information regarding copyright ownership.
5 * The ASF licenses this file to You under the Apache License, Version 2.0
6 * (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 /*
19 * This is not the original file distributed by the Apache Software Foundation
20 * It has been modified by the Hipparchus project
21 */
22
23 package org.hipparchus.analysis.solvers;
24
25 import org.hipparchus.analysis.UnivariateFunction;
26 import org.hipparchus.exception.MathIllegalArgumentException;
27 import org.hipparchus.exception.MathIllegalStateException;
28 import org.hipparchus.exception.MathRuntimeException;
29 import org.hipparchus.util.FastMath;
30
31 /** Interface for {@link UnivariateSolver (univariate real) root-finding
32 * algorithms} that maintain a bracketed solution. There are several advantages
33 * to having such root-finding algorithms:
34 * <ul>
35 * <li>The bracketed solution guarantees that the root is kept within the
36 * interval. As such, these algorithms generally also guarantee
37 * convergence.</li>
38 * <li>The bracketed solution means that we have the opportunity to only
39 * return roots that are greater than or equal to the actual root, or
40 * are less than or equal to the actual root. That is, we can control
41 * whether under-approximations and over-approximations are
42 * {@link AllowedSolution allowed solutions}. Other root-finding
43 * algorithms can usually only guarantee that the solution (the root that
44 * was found) is around the actual root.</li>
45 * </ul>
46 *
47 * <p>For backwards compatibility, all root-finding algorithms must have
48 * {@link AllowedSolution#ANY_SIDE ANY_SIDE} as default for the allowed
49 * solutions.</p>
50 * @param <F> Type of function to solve.
51 *
52 * @see AllowedSolution
53 */
54 public interface BracketedUnivariateSolver<F extends UnivariateFunction>
55 extends BaseUnivariateSolver<F> {
56
57 /**
58 * Solve for a zero in the given interval.
59 * A solver may require that the interval brackets a single zero root.
60 * Solvers that do require bracketing should be able to handle the case
61 * where one of the endpoints is itself a root.
62 *
63 * @param maxEval Maximum number of evaluations.
64 * @param f Function to solve.
65 * @param min Lower bound for the interval.
66 * @param max Upper bound for the interval.
67 * @param allowedSolution The kind of solutions that the root-finding algorithm may
68 * accept as solutions.
69 * @return A value where the function is zero.
70 * @throws org.hipparchus.exception.MathIllegalArgumentException
71 * if the arguments do not satisfy the requirements specified by the solver.
72 * @throws org.hipparchus.exception.MathIllegalStateException if
73 * the allowed number of evaluations is exceeded.
74 */
75 double solve(int maxEval, F f, double min, double max,
76 AllowedSolution allowedSolution);
77
78 /**
79 * Solve for a zero in the given interval, start at {@code startValue}.
80 * A solver may require that the interval brackets a single zero root.
81 * Solvers that do require bracketing should be able to handle the case
82 * where one of the endpoints is itself a root.
83 *
84 * @param maxEval Maximum number of evaluations.
85 * @param f Function to solve.
86 * @param min Lower bound for the interval.
87 * @param max Upper bound for the interval.
88 * @param startValue Start value to use.
89 * @param allowedSolution The kind of solutions that the root-finding algorithm may
90 * accept as solutions.
91 * @return A value where the function is zero.
92 * @throws org.hipparchus.exception.MathIllegalArgumentException
93 * if the arguments do not satisfy the requirements specified by the solver.
94 * @throws org.hipparchus.exception.MathIllegalStateException if
95 * the allowed number of evaluations is exceeded.
96 */
97 double solve(int maxEval, F f, double min, double max, double startValue,
98 AllowedSolution allowedSolution);
99
100 /**
101 * Solve for a zero in the given interval and return a tolerance interval surrounding
102 * the root.
103 *
104 * <p> It is required that the starting interval brackets a root or that the function
105 * value at either end point is 0.0.
106 *
107 * @param maxEval Maximum number of evaluations.
108 * @param f Function to solve.
109 * @param min Lower bound for the interval.
110 * @param max Upper bound for the interval. Must be greater than {@code min}.
111 * @return an interval [ta, tb] such that for some t in [ta, tb] f(t) == 0.0 or has a
112 * step wise discontinuity that crosses zero. Both end points also satisfy the
113 * convergence criteria so either one could be used as the root. That is the interval
114 * satisfies the condition (| tb - ta | <= {@link #getAbsoluteAccuracy() absolute}
115 * accuracy + max(ta, tb) * {@link #getRelativeAccuracy() relative} accuracy) or (
116 * max(|f(ta)|, |f(tb)|) <= {@link #getFunctionValueAccuracy()}) or there are no
117 * floating point numbers between ta and tb. The width of the interval (tb - ta) may
118 * be zero.
119 * @throws MathIllegalArgumentException if the arguments do not satisfy the
120 * requirements specified by the solver.
121 * @throws MathIllegalStateException if the allowed number of evaluations is
122 * exceeded.
123 */
124 default Interval solveInterval(int maxEval, F f, double min, double max)
125 throws MathIllegalArgumentException, MathIllegalStateException {
126 return this.solveInterval(maxEval, f, min, max, min + 0.5 * (max - min));
127 }
128
129 /**
130 * Solve for a zero in the given interval and return a tolerance interval surrounding
131 * the root.
132 *
133 * <p> It is required that the starting interval brackets a root or that the function
134 * value at either end point is 0.0.
135 *
136 * @param maxEval Maximum number of evaluations.
137 * @param startValue start value to use. Must be in the interval [min, max].
138 * @param f Function to solve.
139 * @param min Lower bound for the interval.
140 * @param max Upper bound for the interval. Must be greater than {@code min}.
141 * @return an interval [ta, tb] such that for some t in [ta, tb] f(t) == 0.0 or has a
142 * step wise discontinuity that crosses zero. Both end points also satisfy the
143 * convergence criteria so either one could be used as the root. That is the interval
144 * satisfies the condition (| tb - ta | <= {@link #getAbsoluteAccuracy() absolute}
145 * accuracy + max(ta, tb) * {@link #getRelativeAccuracy() relative} accuracy) or (
146 * max(|f(ta)|, |f(tb)|) <= {@link #getFunctionValueAccuracy()}) or there are no
147 * floating point numbers between ta and tb. The width of the interval (tb - ta) may
148 * be zero.
149 * @throws MathIllegalArgumentException if the arguments do not satisfy the
150 * requirements specified by the solver.
151 * @throws MathIllegalStateException if the allowed number of evaluations is
152 * exceeded.
153 */
154 Interval solveInterval(int maxEval, F f, double min, double max, double startValue)
155 throws MathIllegalArgumentException, MathIllegalStateException;
156
157 /**
158 * An interval of a function that brackets a root.
159 *
160 * <p> Contains two end points and the value of the function at the two end points.
161 *
162 * @see #solveInterval(int, UnivariateFunction, double, double, double)
163 */
164 class Interval {
165
166 /** Abscissa on the left end of the interval. */
167 private final double leftAbscissa;
168 /** Function value at {@link #leftAbscissa}. */
169 private final double leftValue;
170 /** Abscissa on the right end of the interval, >= {@link #leftAbscissa}. */
171 private final double rightAbscissa;
172 /** Function value at {@link #rightAbscissa}. */
173 private final double rightValue;
174
175 /**
176 * Construct a new interval with the given end points.
177 *
178 * @param leftAbscissa is the abscissa value at the left side of the interval.
179 * @param leftValue is the function value at {@code leftAbscissa}.
180 * @param rightAbscissa is the abscissa value on the right side of the interval.
181 * Must be greater than or equal to {@code leftAbscissa}.
182 * @param rightValue is the function value at {@code rightAbscissa}.
183 */
184 public Interval(final double leftAbscissa,
185 final double leftValue,
186 final double rightAbscissa,
187 final double rightValue) {
188 this.leftAbscissa = leftAbscissa;
189 this.leftValue = leftValue;
190 this.rightAbscissa = rightAbscissa;
191 this.rightValue = rightValue;
192 }
193
194 /**
195 * Get the left abscissa.
196 *
197 * @return abscissa of the start of the interval.
198 */
199 public double getLeftAbscissa() {
200 return leftAbscissa;
201 }
202
203 /**
204 * Get the right abscissa.
205 *
206 * @return abscissa of the end of the interval.
207 */
208 public double getRightAbscissa() {
209 return rightAbscissa;
210 }
211
212 /**
213 * Get the function value at {@link #getLeftAbscissa()}.
214 *
215 * @return value of the function at the start of the interval.
216 */
217 public double getLeftValue() {
218 return leftValue;
219 }
220
221 /**
222 * Get the function value at {@link #getRightAbscissa()}.
223 *
224 * @return value of the function at the end of the interval.
225 */
226 public double getRightValue() {
227 return rightValue;
228 }
229
230 /**
231 * Get the abscissa corresponding to the allowed side.
232 *
233 * @param allowed side of the root.
234 * @return the abscissa on the selected side of the root.
235 */
236 public double getSide(final AllowedSolution allowed) {
237 final double xA = this.getLeftAbscissa();
238 final double yA = this.getLeftValue();
239 final double xB = this.getRightAbscissa();
240 switch (allowed) {
241 case ANY_SIDE:
242 final double absYA = FastMath.abs(this.getLeftValue());
243 final double absYB = FastMath.abs(this.getRightValue());
244 return absYA < absYB ? xA : xB;
245 case LEFT_SIDE:
246 return xA;
247 case RIGHT_SIDE:
248 return xB;
249 case BELOW_SIDE:
250 return (yA <= 0) ? xA : xB;
251 case ABOVE_SIDE:
252 return (yA < 0) ? xB : xA;
253 default:
254 // this should never happen
255 throw MathRuntimeException.createInternalError();
256 }
257 }
258
259 }
260
261 }