NegativeParameter.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.jacobi;
import org.hipparchus.util.FastMath;
/** Algorithm for computing the principal Jacobi functions for negative parameter m.
* <p>
* The rules for negative parameter change are given in Abramowitz and Stegun, section 16.10.
* </p>
* @since 2.0
*/
class NegativeParameter extends JacobiElliptic {
/** Algorithm to use for the positive parameter. */
private final JacobiElliptic algorithm;
/** Input scaling factor. */
private final double inputScale;
/** output scaling factor. */
private final double outputScale;
/** Simple constructor.
* @param m parameter of the Jacobi elliptic function (must be negative here)
*/
NegativeParameter(final double m) {
super(m);
final double omM = 1.0 - m;
algorithm = JacobiEllipticBuilder.build(-m / omM);
inputScale = FastMath.sqrt(omM);
outputScale = 1.0 / inputScale;
}
/** {@inheritDoc} */
@Override
public CopolarN valuesN(final double u) {
final CopolarD trioD = new CopolarD(algorithm.valuesN(u * inputScale));
return new CopolarN(outputScale * trioD.sd(), trioD.cd(), trioD.nd());
}
}