NearOneParameter.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.jacobi;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.SinhCosh;
/** Algorithm for computing the principal Jacobi functions for parameters slightly below one.
* <p>
* The algorithm for evaluating the functions is based on approximation
* in terms of hyperbolic functions. It is given in Abramowitz and Stegun,
* sections 16.15.
* </p>
* @since 2.0
*/
class NearOneParameter extends JacobiElliptic {
/** Complementary parameter of the Jacobi elliptic function. */
private final double m1;
/** Simple constructor.
* @param m parameter of the Jacobi elliptic function (must be one or slightly below one here)
*/
NearOneParameter(final double m) {
super(m);
this.m1 = 1.0 - m;
}
/** {@inheritDoc} */
@Override
public CopolarN valuesN(final double u) {
final SinhCosh sch = FastMath.sinhCosh(u);
final double sech = 1.0 / sch.cosh();
final double t = sch.sinh() * sech;
final double factor = 0.25 * m1 * (sch.sinh() * sch.cosh() - u) * sech;
return new CopolarN(t + factor * sech, // equation 16.15.1
sech - factor * t, // equation 16.15.2
sech + factor * t); // equation 16.15.3
}
}