FieldNegativeParameter.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.jacobi;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.FastMath;
/** Algorithm for computing the principal Jacobi functions for negative parameter m.
* <p>
* The rules for negative parameter change are given in Abramowitz and Stegun, section 16.10.
* </p>
* @param <T> the type of the field elements
* @since 2.0
*/
class FieldNegativeParameter<T extends CalculusFieldElement<T>> extends FieldJacobiElliptic<T> {
/** Algorithm to use for the positive parameter. */
private final FieldJacobiElliptic<T> algorithm;
/** Input scaling factor. */
private final T inputScale;
/** output scaling factor. */
private final T outputScale;
/** Simple constructor.
* @param m parameter of the Jacobi elliptic function (must be negative here)
*/
FieldNegativeParameter(final T m) {
super(m);
final T omM = m.getField().getOne().subtract(m);
algorithm = JacobiEllipticBuilder.build(m.negate().divide(omM));
inputScale = FastMath.sqrt(omM);
outputScale = inputScale.reciprocal();
}
/** {@inheritDoc} */
@Override
public FieldCopolarN<T> valuesN(final T u) {
final FieldCopolarD<T> trioD = new FieldCopolarD<>(algorithm.valuesN(u.multiply(inputScale)));
return new FieldCopolarN<>(outputScale.multiply(trioD.sd()), trioD.cd(), trioD.nd());
}
}