FieldNearZeroParameter.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.jacobi;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.FieldSinCos;
/** Algorithm for computing the principal Jacobi functions for parameters slightly above zero.
* <p>
* The algorithm for evaluating the functions is based on approximation
* in terms of circular functions. It is given in Abramowitz and Stegun,
* sections 16.13.
* </p>
* @param <T> the type of the field elements
* @since 2.0
*/
class FieldNearZeroParameter<T extends CalculusFieldElement<T>> extends FieldJacobiElliptic<T> {
/** Simple constructor.
* @param m parameter of the Jacobi elliptic function (must be zero or slightly positive here)
*/
FieldNearZeroParameter(final T m) {
super(m);
}
/** {@inheritDoc} */
@Override
public FieldCopolarN<T> valuesN(final T u) {
final FieldSinCos<T> sc = FastMath.sinCos(u);
final T factor = getM().multiply(u.subtract(sc.sin().multiply(sc.cos()))).multiply(0.25);
return new FieldCopolarN<>(sc.sin().subtract(factor.multiply(sc.cos())), // equation 16.13.1
sc.cos().add(factor.multiply(sc.sin())), // equation 16.13.2
getM().multiply(sc.sin()).multiply(sc.sin()).multiply(-0.5).add(1)); // equation 16.13.3
}
}