RjRealDuplication.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.carlson;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
/** Duplication algorithm for Carlson R<sub>J</sub> elliptic integral.
* @since 2.0
*/
class RjRealDuplication extends RealDuplication {
/** Delta product. */
private double delta;
/** sₘ iteration parameter. */
private double sM;
/** Simple constructor.
* @param x first symmetric variable of the integral
* @param y second symmetric variable of the integral
* @param z third symmetric variable of the integral
* @param p fourth <em>not</em> symmetric variable of the integral
* @param delta precomputed value of (p-x)(p-y)(p-z)
*/
RjRealDuplication(final double x, final double y, final double z, final double p, final double delta) {
super(x, y, z, p);
this.delta = delta;
}
/** {@inheritDoc} */
@Override
protected void initialMeanPoint(final double[] va) {
va[4] = (va[0] + va[1] + va[2] + va[3] * 2) / 5.0;
}
/** {@inheritDoc} */
@Override
protected double convergenceCriterion(final double r, final double max) {
return max / (FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r * 0.25))));
}
/** {@inheritDoc} */
@Override
protected void update(final int m, final double[] vaM, final double[] sqrtM, final double fourM) {
final double dM = (sqrtM[3] + sqrtM[0]) * (sqrtM[3] + sqrtM[1]) * (sqrtM[3] + sqrtM[2]);
if (m == 0) {
sM = dM * 0.5;
} else {
// equation A.3 in Carlson[2000]
final double rM = sM * (FastMath.sqrt(delta / (sM * sM * fourM) + 1.0) + 1.0);
sM = (dM * rM - delta / (fourM * fourM)) / ((dM + rM / fourM) * 2);
}
// equation 2.19 in Carlson[1995]
final double lambdaA = sqrtM[0] * sqrtM[1];
final double lambdaB = sqrtM[0] * sqrtM[2];
final double lambdaC = sqrtM[1] * sqrtM[2];
// equations 2.19 and 2.20 in Carlson[1995]
vaM[0] = MathArrays.linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // xₘ
vaM[1] = MathArrays.linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // yₘ
vaM[2] = MathArrays.linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // zₘ
vaM[3] = MathArrays.linearCombination(0.25, vaM[3], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // pₘ
vaM[4] = MathArrays.linearCombination(0.25, vaM[4], 0.25, lambdaA, 0.25, lambdaB, 0.25, lambdaC); // aₘ
}
/** {@inheritDoc} */
@Override
protected double evaluate(final double[] va0, final double aM, final double fourM) {
// compute symmetric differences
final double inv = 1.0 / (aM * fourM);
final double bigX = (va0[4] - va0[0]) * inv;
final double bigY = (va0[4] - va0[1]) * inv;
final double bigZ = (va0[4] - va0[2]) * inv;
final double bigP = (bigX + bigY + bigZ) * -0.5;
final double bigP2 = bigP * bigP;
// compute elementary symmetric functions (we already know e1 = 0 by construction)
final double xyz = bigX * bigY * bigZ;
final double e2 = bigX * (bigY + bigZ) + bigY * bigZ - bigP * bigP * 3;
final double e3 = xyz + bigP * 2 * (e2 + bigP2 * 2);
final double e4 = (xyz * 2 + bigP * (e2 + bigP2 * 3)) * bigP;
final double e5 = xyz * bigP2;
final double e2e2 = e2 * e2;
final double e2e3 = e2 * e3;
final double e2e4 = e2 * e4;
final double e2e5 = e2 * e5;
final double e3e3 = e3 * e3;
final double e3e4 = e3 * e4;
final double e2e2e2 = e2e2 * e2;
final double e2e2e3 = e2e2 * e3;
// evaluate integral using equation 19.36.1 in DLMF
// (which add more terms than equation 2.7 in Carlson[1995])
final double poly = ((e3e4 + e2e5) * RdRealDuplication.E3_E4_P_E2_E5 +
e2e2e3 * RdRealDuplication.E2_E2_E3 +
e2e4 * RdRealDuplication.E2_E4 +
e3e3 * RdRealDuplication.E3_E3 +
e2e2e2 * RdRealDuplication.E2_E2_E2 +
e5 * RdRealDuplication.E5 +
e2e3 * RdRealDuplication.E2_E3 +
e4 * RdRealDuplication.E4 +
e2e2 * RdRealDuplication.E2_E2 +
e3 * RdRealDuplication.E3 +
e2 * RdRealDuplication.E2 +
RdRealDuplication.CONSTANT) /
RdRealDuplication.DENOMINATOR;
final double polyTerm = poly / (aM * FastMath.sqrt(aM) * fourM);
// compute a single R_C term
final double rcTerm = new RcRealDuplication(1.0, delta / (sM * sM * fourM) + 1.0).integral() * 3 / sM;
return polyTerm + rcTerm;
}
}