RcRealDuplication.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.carlson;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathArrays;
/** Duplication algorithm for Carlson R<sub>C</sub> elliptic integral.
* @since 2.0
*/
class RcRealDuplication extends RealDuplication {
/** Constant term in R<sub>C</sub> polynomial. */
static final double S0 = 80080;
/** Coefficient of s² in R<sub>C</sub> polynomial. */
static final double S2 = 24024;
/** Coefficient of s³ in R<sub>C</sub> polynomial. */
static final double S3 = 11440;
/** Coefficient of s⁴ in R<sub>C</sub> polynomial. */
static final double S4 = 30030;
/** Coefficient of s⁵ in R<sub>C</sub> polynomial. */
static final double S5 = 32760;
/** Coefficient of s⁶ in R<sub>C</sub> polynomial. */
static final double S6 = 61215;
/** Coefficient of s⁷ in R<sub>C</sub> polynomial. */
static final double S7 = 90090;
/** Denominator in R<sub>C</sub> polynomial. */
static final double DENOMINATOR = 80080;
/** Simple constructor.
* @param x first symmetric variable of the integral
* @param y second symmetric variable of the integral
*/
RcRealDuplication(final double x, final double y) {
super(x, y);
}
/** {@inheritDoc} */
@Override
protected void initialMeanPoint(final double[] va) {
va[2] = (va[0] + va[1] * 2) / 3.0;
}
/** {@inheritDoc} */
@Override
protected double convergenceCriterion(final double r, final double max) {
return max / FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r * 3.0)));
}
/** {@inheritDoc} */
@Override
protected void update(final int m, final double[] vaM, final double[] sqrtM, final double fourM) {
final double lambdaA = sqrtM[0] * sqrtM[1] * 2;
final double lambdaB = vaM[1];
vaM[0] = MathArrays.linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB); // xₘ
vaM[1] = MathArrays.linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB); // yₘ
vaM[2] = MathArrays.linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB); // aₘ
}
/** {@inheritDoc} */
@Override
protected double evaluate(final double[] va0, final double aM, final double fourM) {
// compute the single polynomial independent variable
final double s = (va0[1] - va0[2]) / (aM * fourM);
// evaluate integral using equation 2.13 in Carlson[1995]
final double poly = ((((((S7 * s + S6) * s + S5) * s + S4) * s + S3) * s + S2) * s * s + S0) / DENOMINATOR;
return poly / FastMath.sqrt(aM);
}
}