RcFieldDuplication.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.special.elliptic.carlson;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.complex.Complex;
import org.hipparchus.complex.FieldComplex;
import org.hipparchus.util.FastMath;
/** Duplication algorithm for Carlson R<sub>C</sub> elliptic integral.
* @param <T> type of the field elements (really {@link Complex} or {@link FieldComplex})
* @since 2.0
*/
class RcFieldDuplication<T extends CalculusFieldElement<T>> extends FieldDuplication<T> {
/** Simple constructor.
* @param x first symmetric variable of the integral
* @param y second symmetric variable of the integral
*/
RcFieldDuplication(final T x, final T y) {
super(x, y);
}
/** {@inheritDoc} */
@Override
protected void initialMeanPoint(final T[] va) {
va[2] = va[0].add(va[1].multiply(2)).divide(3.0);
}
/** {@inheritDoc} */
@Override
protected T convergenceCriterion(final T r, final T max) {
return max.divide(FastMath.sqrt(FastMath.sqrt(FastMath.sqrt(r.multiply(3.0)))));
}
/** {@inheritDoc} */
@Override
protected void update(final int m, final T[] vaM, final T[] sqrtM, final double fourM) {
final T lambdaA = sqrtM[0].multiply(sqrtM[1]).multiply(2);
final T lambdaB = vaM[1];
vaM[0] = vaM[0].linearCombination(0.25, vaM[0], 0.25, lambdaA, 0.25, lambdaB); // xₘ
vaM[1] = vaM[1].linearCombination(0.25, vaM[1], 0.25, lambdaA, 0.25, lambdaB); // yₘ
vaM[2] = vaM[2].linearCombination(0.25, vaM[2], 0.25, lambdaA, 0.25, lambdaB); // aₘ
}
/** {@inheritDoc} */
@Override
protected T evaluate(final T[] va0, final T aM, final double fourM) {
// compute the single polynomial independent variable
final T s = va0[1].subtract(va0[2]).divide(aM.multiply(fourM));
// evaluate integral using equation 2.13 in Carlson[1995]
final T poly = s.multiply(RcRealDuplication.S7).
add(RcRealDuplication.S6).multiply(s).
add(RcRealDuplication.S5).multiply(s).
add(RcRealDuplication.S4).multiply(s).
add(RcRealDuplication.S3).multiply(s).
add(RcRealDuplication.S2).multiply(s).
multiply(s).
add(RcRealDuplication.S0).
divide(RcRealDuplication.DENOMINATOR);
return poly.divide(FastMath.sqrt(aM));
}
}