PoissonDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.distribution.discrete;
- import org.hipparchus.distribution.continuous.NormalDistribution;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.special.Gamma;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * Implementation of the Poisson distribution.
- *
- * @see <a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution (Wikipedia)</a>
- * @see <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution (MathWorld)</a>
- */
- public class PoissonDistribution extends AbstractIntegerDistribution {
- /** Default maximum number of iterations for cumulative probability calculations. */
- public static final int DEFAULT_MAX_ITERATIONS = 10000000;
- /** Default convergence criterion. */
- public static final double DEFAULT_EPSILON = 1e-12;
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160320L;
- /** Distribution used to compute normal approximation. */
- private final NormalDistribution normal;
- /** Mean of the distribution. */
- private final double mean;
- /**
- * Maximum number of iterations for cumulative probability. Cumulative
- * probabilities are estimated using either Lanczos series approximation
- * of {@link Gamma#regularizedGammaP(double, double, double, int)}
- * or continued fraction approximation of
- * {@link Gamma#regularizedGammaQ(double, double, double, int)}.
- */
- private final int maxIterations;
- /** Convergence criterion for cumulative probability. */
- private final double epsilon;
- /**
- * Creates a new Poisson distribution with specified mean.
- *
- * @param p the Poisson mean
- * @throws MathIllegalArgumentException if {@code p <= 0}.
- */
- public PoissonDistribution(double p) throws MathIllegalArgumentException {
- this(p, DEFAULT_EPSILON, DEFAULT_MAX_ITERATIONS);
- }
- /**
- * Creates a new Poisson distribution with specified mean, convergence
- * criterion and maximum number of iterations.
- *
- * @param p Poisson mean.
- * @param epsilon Convergence criterion for cumulative probabilities.
- * @param maxIterations the maximum number of iterations for cumulative
- * probabilities.
- * @throws MathIllegalArgumentException if {@code p <= 0}.
- */
- public PoissonDistribution(double p, double epsilon, int maxIterations)
- throws MathIllegalArgumentException {
- if (p <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.MEAN, p);
- }
- mean = p;
- this.epsilon = epsilon;
- this.maxIterations = maxIterations;
- // Use the same RNG instance as the parent class.
- normal = new NormalDistribution(p, FastMath.sqrt(p));
- }
- /**
- * Creates a new Poisson distribution with the specified mean and
- * convergence criterion.
- *
- * @param p Poisson mean.
- * @param epsilon Convergence criterion for cumulative probabilities.
- * @throws MathIllegalArgumentException if {@code p <= 0}.
- */
- public PoissonDistribution(double p, double epsilon)
- throws MathIllegalArgumentException {
- this(p, epsilon, DEFAULT_MAX_ITERATIONS);
- }
- /**
- * Creates a new Poisson distribution with the specified mean and maximum
- * number of iterations.
- *
- * @param p Poisson mean.
- * @param maxIterations Maximum number of iterations for cumulative probabilities.
- */
- public PoissonDistribution(double p, int maxIterations) {
- this(p, DEFAULT_EPSILON, maxIterations);
- }
- /**
- * Get the mean for the distribution.
- *
- * @return the mean for the distribution.
- */
- public double getMean() {
- return mean;
- }
- /** {@inheritDoc} */
- @Override
- public double probability(int x) {
- final double logProbability = logProbability(x);
- return logProbability == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logProbability);
- }
- /** {@inheritDoc} */
- @Override
- public double logProbability(int x) {
- double ret;
- if (x < 0 || x == Integer.MAX_VALUE) {
- ret = Double.NEGATIVE_INFINITY;
- } else if (x == 0) {
- ret = -mean;
- } else {
- ret = -SaddlePointExpansion.getStirlingError(x) -
- SaddlePointExpansion.getDeviancePart(x, mean) -
- 0.5 * FastMath.log(MathUtils.TWO_PI) - 0.5 * FastMath.log(x);
- }
- return ret;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(int x) {
- if (x < 0) {
- return 0;
- }
- if (x == Integer.MAX_VALUE) {
- return 1;
- }
- return Gamma.regularizedGammaQ((double) x + 1, mean, epsilon,
- maxIterations);
- }
- /**
- * Calculates the Poisson distribution function using a normal
- * approximation. The {@code N(mean, sqrt(mean))} distribution is used
- * to approximate the Poisson distribution. The computation uses
- * "half-correction" (evaluating the normal distribution function at
- * {@code x + 0.5}).
- *
- * @param x Upper bound, inclusive.
- * @return the distribution function value calculated using a normal
- * approximation.
- */
- public double normalApproximateProbability(int x) {
- // calculate the probability using half-correction
- return normal.cumulativeProbability(x + 0.5);
- }
- /**
- * {@inheritDoc}
- *
- * For mean parameter {@code p}, the mean is {@code p}.
- */
- @Override
- public double getNumericalMean() {
- return getMean();
- }
- /**
- * {@inheritDoc}
- *
- * For mean parameter {@code p}, the variance is {@code p}.
- */
- @Override
- public double getNumericalVariance() {
- return getMean();
- }
- /**
- * {@inheritDoc}
- *
- * The lower bound of the support is always 0 no matter the mean parameter.
- *
- * @return lower bound of the support (always 0)
- */
- @Override
- public int getSupportLowerBound() {
- return 0;
- }
- /**
- * {@inheritDoc}
- *
- * The upper bound of the support is positive infinity,
- * regardless of the parameter values. There is no integer infinity,
- * so this method returns {@code Integer.MAX_VALUE}.
- *
- * @return upper bound of the support (always {@code Integer.MAX_VALUE} for
- * positive infinity)
- */
- @Override
- public int getSupportUpperBound() {
- return Integer.MAX_VALUE;
- }
- /**
- * {@inheritDoc}
- *
- * The support of this distribution is connected.
- *
- * @return {@code true}
- */
- @Override
- public boolean isSupportConnected() {
- return true;
- }
- }