FieldHermiteRuleFactory.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.analysis.integration.gauss;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.Pair;
/**
* Factory that creates a
* <a href="http://en.wikipedia.org/wiki/Gauss-Hermite_quadrature">
* Gauss-type quadrature rule using Hermite polynomials</a>
* of the first kind.
* Such a quadrature rule allows the calculation of improper integrals
* of a function
* <p>
* \(f(x) e^{-x^2}\)
* </p><p>
* Recurrence relation and weights computation follow
* <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun">
* Abramowitz and Stegun, 1964</a>.
* </p><p>
* The coefficients of the standard Hermite polynomials grow very rapidly.
* In order to avoid overflows, each Hermite polynomial is normalized with
* respect to the underlying scalar product.
* @param <T> Type of the number used to represent the points and weights of
* the quadrature rules.
* @since 2.0
*/
public class FieldHermiteRuleFactory<T extends CalculusFieldElement<T>> extends FieldAbstractRuleFactory<T> {
/** Simple constructor
* @param field field to which rule coefficients belong
*/
public FieldHermiteRuleFactory(final Field<T> field) {
super(field);
}
/** {@inheritDoc} */
@Override
protected Pair<T[], T[]> computeRule(int numberOfPoints)
throws MathIllegalArgumentException {
final Field<T> field = getField();
final T sqrtPi = field.getZero().getPi().sqrt();
if (numberOfPoints == 1) {
// Break recursion.
final T[] points = MathArrays.buildArray(field, numberOfPoints);
final T[] weights = MathArrays.buildArray(field, numberOfPoints);
points[0] = field.getZero();
weights[0] = sqrtPi;
return new Pair<>(points, weights);
}
// find nodes as roots of Hermite polynomial
final T[] points = findRoots(numberOfPoints, new Hermite<>(field, numberOfPoints)::ratio);
enforceSymmetry(points);
// compute weights
final T[] weights = MathArrays.buildArray(field, numberOfPoints);
final Hermite<T> hm1 = new Hermite<>(field, numberOfPoints - 1);
for (int i = 0; i < numberOfPoints; i++) {
final T y = hm1.hNhNm1(points[i])[0];
weights[i] = sqrtPi.divide(y.square().multiply(numberOfPoints));
}
return new Pair<>(points, weights);
}
/** Hermite polynomial, normalized to avoid overflow.
* <p>
* The regular Hermite polynomials and associated weights are given by:
* <pre>
* H₀(x) = 1
* H₁(x) = 2 x
* Hₙ₊₁(x) = 2x Hₙ(x) - 2n Hₙ₋₁(x), and H'ₙ(x) = 2n Hₙ₋₁(x)
* wₙ(xᵢ) = [2ⁿ⁻¹ n! √π]/[n Hₙ₋₁(xᵢ)]²
* </pre>
* </p>
* <p>
* In order to avoid overflow with normalize the polynomials hₙ(x) = Hₙ(x) / √[2ⁿ n!]
* so the recurrence relations and weights become:
* <pre>
* h₀(x) = 1
* h₁(x) = √2 x
* hₙ₊₁(x) = [√2 x hₙ(x) - √n hₙ₋₁(x)]/√(n+1), and h'ₙ(x) = 2n hₙ₋₁(x)
* uₙ(xᵢ) = √π/[n Nₙ₋₁(xᵢ)²]
* </pre>
* </p>
* @param <T> Type of the field elements.
*/
private static class Hermite<T extends CalculusFieldElement<T>> {
/** √2. */
private final T sqrt2;
/** Degree. */
private final int degree;
/** Simple constructor.
* @param field field to which rule coefficients belong
* @param degree polynomial degree
*/
Hermite(Field<T> field, int degree) {
this.sqrt2 = field.getZero().newInstance(2).sqrt();
this.degree = degree;
}
/** Compute ratio H(x)/H'(x).
* @param x point at which ratio must be computed
* @return ratio H(x)/H'(x)
*/
public T ratio(T x) {
T[] h = hNhNm1(x);
return h[0].divide(h[1].multiply(2 * degree));
}
/** Compute Nₙ(x) and Nₙ₋₁(x).
* @param x point at which polynomials are evaluated
* @return array containing Nₙ(x) at index 0 and Nₙ₋₁(x) at index 1
*/
private T[] hNhNm1(final T x) {
T[] h = MathArrays.buildArray(x.getField(), 2);
h[0] = sqrt2.multiply(x);
h[1] = x.getField().getOne();
T sqrtN = x.getField().getOne();
for (int n = 1; n < degree; n++) {
// apply recurrence relation hₙ₊₁(x) = [√2 x hₙ(x) - √n hₙ₋₁(x)]/√(n+1)
final T sqrtNp = x.getField().getZero().newInstance(n + 1).sqrt();
final T hp = (h[0].multiply(x).multiply(sqrt2).subtract(h[1].multiply(sqrtN))).divide(sqrtNp);
h[1] = h[0];
h[0] = hp;
sqrtN = sqrtNp;
}
return h;
}
}
}