FieldTaylorMap.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.analysis.differentiation;
import java.lang.reflect.Array;
import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.linear.FieldMatrix;
import org.hipparchus.linear.FieldMatrixDecomposer;
import org.hipparchus.linear.MatrixUtils;
import org.hipparchus.util.MathArrays;
import org.hipparchus.util.MathUtils;
/** Container for a Taylor map.
* <p>
* A Taylor map is a set of n {@link DerivativeStructure}
* \((f_1, f_2, \ldots, f_n)\) depending on m parameters \((p_1, p_2, \ldots, p_m)\),
* with positive n and m.
* </p>
* @param <T> the type of the function parameters and value
* @since 2.2
*/
public class FieldTaylorMap<T extends CalculusFieldElement<T>> implements DifferentialAlgebra {
/** Evaluation point. */
private final T[] point;
/** Mapping functions. */
private final FieldDerivativeStructure<T>[] functions;
/** Simple constructor.
* <p>
* The number of number of parameters and derivation orders of all
* functions must match.
* </p>
* @param point point at which map is evaluated
* @param functions functions composing the map (must contain at least one element)
*/
public FieldTaylorMap(final T[] point, final FieldDerivativeStructure<T>[] functions) {
if (point == null || point.length == 0) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_ELEMENTS_SHOULD_BE_POSITIVE,
point == null ? 0 : point.length);
}
if (functions == null || functions.length == 0) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_OF_ELEMENTS_SHOULD_BE_POSITIVE,
functions == null ? 0 : functions.length);
}
this.point = point.clone();
this.functions = functions.clone();
final FDSFactory<T> factory0 = functions[0].getFactory();
MathUtils.checkDimension(point.length, factory0.getCompiler().getFreeParameters());
for (int i = 1; i < functions.length; ++i) {
factory0.checkCompatibility(functions[i].getFactory());
}
}
/** Constructor for identity map.
* <p>
* The identity is considered to be evaluated at origin.
* </p>
* @param valueField field for the function parameters and value
* @param parameters number of free parameters
* @param order derivation order
* @param nbFunctions number of functions
*/
public FieldTaylorMap(final Field<T> valueField, final int parameters, final int order, final int nbFunctions) {
this(valueField, parameters, nbFunctions);
final FDSFactory<T> factory = new FDSFactory<>(valueField, parameters, order);
for (int i = 0; i < nbFunctions; ++i) {
functions[i] = factory.variable(i, 0.0);
}
}
/** Build an empty map evaluated at origin.
* @param valueField field for the function parameters and value
* @param parameters number of free parameters
* @param nbFunctions number of functions
*/
@SuppressWarnings("unchecked")
private FieldTaylorMap(final Field<T> valueField, final int parameters, final int nbFunctions) {
this.point = MathArrays.buildArray(valueField, parameters);
this.functions = (FieldDerivativeStructure<T>[]) Array.newInstance(FieldDerivativeStructure.class, nbFunctions);
}
/** {@inheritDoc} */
@Override
public int getFreeParameters() {
return point.length;
}
/** {@inheritDoc} */
@Override
public int getOrder() {
return functions[0].getOrder();
}
/** Get the number of parameters of the map.
* @return number of parameters of the map
*/
@Deprecated
public int getNbParameters() {
return getFreeParameters();
}
/** Get the number of functions of the map.
* @return number of functions of the map
*/
public int getNbFunctions() {
return functions.length;
}
/** Get the point at which map is evaluated.
* @return point at which map is evaluated
*/
public T[] getPoint() {
return point.clone();
}
/** Get a function from the map.
* @param i index of the function (must be between 0 included and {@link #getNbFunctions()} excluded
* @return function at index i
*/
public FieldDerivativeStructure<T> getFunction(final int i) {
return functions[i];
}
/** Subtract two maps.
* @param map map to subtract from instance
* @return this - map
*/
private FieldTaylorMap<T> subtract(final FieldTaylorMap<T> map) {
final FieldTaylorMap<T> result = new FieldTaylorMap<>(functions[0].getFactory().getValueField(),
point.length, functions.length);
for (int i = 0; i < result.functions.length; ++i) {
result.functions[i] = functions[i].subtract(map.functions[i]);
}
return result;
}
/** Evaluate Taylor expansion of the map at some offset.
* @param deltaP parameters offsets \((\Delta p_1, \Delta p_2, \ldots, \Delta p_n)\)
* @return value of the Taylor expansion at \((p_1 + \Delta p_1, p_2 + \Delta p_2, \ldots, p_n + \Delta p_n)\)
*/
public T[] value(final double... deltaP) {
final T[] value = MathArrays.buildArray(functions[0].getFactory().getValueField(), functions.length);
for (int i = 0; i < functions.length; ++i) {
value[i] = functions[i].taylor(deltaP);
}
return value;
}
/** Evaluate Taylor expansion of the map at some offset.
* @param deltaP parameters offsets \((\Delta p_1, \Delta p_2, \ldots, \Delta p_n)\)
* @return value of the Taylor expansion at \((p_1 + \Delta p_1, p_2 + \Delta p_2, \ldots, p_n + \Delta p_n)\)
*/
public T[] value(@SuppressWarnings("unchecked") final T... deltaP) {
final T[] value = MathArrays.buildArray(functions[0].getFactory().getValueField(), functions.length);
for (int i = 0; i < functions.length; ++i) {
value[i] = functions[i].taylor(deltaP);
}
return value;
}
/** Compose the instance with another Taylor map as \(\mathrm{this} \circ \mathrm{other}\).
* @param other map with which instance must be composed
* @return composed map \(\mathrm{this} \circ \mathrm{other}\)
*/
public FieldTaylorMap<T> compose(final FieldTaylorMap<T> other) {
// safety check
MathUtils.checkDimension(getFreeParameters(), other.getNbFunctions());
@SuppressWarnings("unchecked")
final FieldDerivativeStructure<T>[] composed = (FieldDerivativeStructure<T>[]) Array.newInstance(FieldDerivativeStructure.class,
functions.length);
for (int i = 0; i < functions.length; ++i) {
composed[i] = functions[i].rebase(other.functions);
}
return new FieldTaylorMap<>(other.point, composed);
}
/** Invert the instance.
* <p>
* Consider {@link #value(double[]) Taylor expansion} of the map with
* small parameters offsets \((\Delta p_1, \Delta p_2, \ldots, \Delta p_n)\)
* which leads to evaluation offsets \((f_1 + df_1, f_2 + df_2, \ldots, f_n + df_n)\).
* The map inversion defines a Taylor map that computes \((\Delta p_1,
* \Delta p_2, \ldots, \Delta p_n)\) from \((df_1, df_2, \ldots, df_n)\).
* </p>
* <p>
* The map must be square to be invertible (i.e. the number of functions and the
* number of parameters in the functions must match)
* </p>
* @param decomposer matrix decomposer to user for inverting the linear part
* @return inverted map
* @see <a href="https://doi.org/10.1016/S1076-5670(08)70228-3">chapter
* 2 of Advances in Imaging and Electron Physics, vol 108
* by Martin Berz</a>
*/
public FieldTaylorMap<T> invert(final FieldMatrixDecomposer<T> decomposer) {
final FDSFactory<T> factory = functions[0].getFactory();
final Field<T> field = factory.getValueField();
final DSCompiler compiler = factory.getCompiler();
final int n = functions.length;
// safety check
MathUtils.checkDimension(n, functions[0].getFreeParameters());
// set up an indirection array between linear terms and complete derivatives arrays
final int[] indirection = new int[n];
int linearIndex = 0;
for (int k = 1; linearIndex < n; ++k) {
if (compiler.getPartialDerivativeOrdersSum(k) == 1) {
indirection[linearIndex++] = k;
}
}
// separate linear and non-linear terms
final FieldMatrix<T> linear = MatrixUtils.createFieldMatrix(field, n, n);
final FieldTaylorMap<T> nonLinearTM = new FieldTaylorMap<>(field, n, n);
for (int i = 0; i < n; ++i) {
nonLinearTM.functions[i] = factory.build(functions[i].getAllDerivatives());
nonLinearTM.functions[i].setDerivativeComponent(0, field.getZero());
for (int j = 0; j < n; ++j) {
final int k = indirection[j];
linear.setEntry(i, j, functions[i].getDerivativeComponent(k));
nonLinearTM.functions[i].setDerivativeComponent(k, field.getZero());
}
}
// invert the linear part
final FieldMatrix<T> linearInvert = decomposer.decompose(linear).getInverse();
// convert the invert of linear part back to a Taylor map
final FieldTaylorMap<T> linearInvertTM = new FieldTaylorMap<>(field, n, n);
for (int i = 0; i < n; ++i) {
linearInvertTM.functions[i] = new FieldDerivativeStructure<>(factory);
for (int j = 0; j < n; ++j) {
linearInvertTM.functions[i].setDerivativeComponent(indirection[j], linearInvert.getEntry(i, j));
}
}
// perform fixed-point evaluation of the inverse
// adding one derivation order at each iteration
final FieldTaylorMap<T> identity = new FieldTaylorMap<>(field, n, compiler.getOrder(), n);
FieldTaylorMap<T> invertTM = linearInvertTM;
for (int k = 1; k < compiler.getOrder(); ++k) {
invertTM = linearInvertTM.compose(identity.subtract(nonLinearTM.compose(invertTM)));
}
// set the constants
for (int i = 0; i < n; ++i) {
invertTM.point[i] = functions[i].getValue();
invertTM.functions[i].setDerivativeComponent(0, point[i]);
}
return invertTM;
}
}