Uses of Class
org.hipparchus.exception.MathRuntimeException
Package
Description
Common classes used throughout the Hipparchus library.
This package holds the main interfaces and basic building block classes
dealing with differentiation.
Univariate real functions interpolation algorithms.
Specialized exceptions for algorithms errors.
Linear algebra support.
Convenience routines and common data structures used throughout the Hipparchus library.
-
Uses of MathRuntimeException in org.hipparchus
Modifier and TypeMethodDescriptionCompute this ÷ a.FieldElement.reciprocal()
Returns the multiplicative inverse ofthis
element. -
Uses of MathRuntimeException in org.hipparchus.analysis.differentiation
Modifier and TypeMethodDescriptiondouble
DerivativeStructure.taylor
(double... delta) Evaluate Taylor expansion a derivative structure.double
DSCompiler.taylor
(double[] ds, int dsOffset, double... delta) Evaluate Taylor expansion of a derivative structure.<T extends CalculusFieldElement<T>>
TDSCompiler.taylor
(T[] ds, int dsOffset, double... delta) Evaluate Taylor expansion of a derivative structure.final <T extends CalculusFieldElement<T>>
TDSCompiler.taylor
(T[] ds, int dsOffset, T... delta) Evaluate Taylor expansion of a derivative structure.FieldDerivativeStructure.taylor
(double... delta) Evaluate Taylor expansion of a derivative structure.final T
Evaluate Taylor expansion of a derivative structure. -
Uses of MathRuntimeException in org.hipparchus.analysis.interpolation
Modifier and TypeMethodDescriptionfinal void
FieldHermiteInterpolator.addSamplePoint
(T x, T[]... value) Add a sample point.void
HermiteInterpolator.addSamplePoint
(double x, double[]... value) Add a sample point. -
Uses of MathRuntimeException in org.hipparchus.exception
Modifier and TypeClassDescriptionclass
Base class for all preconditions violation exceptions.class
Base class for all exceptions that signal that the process throwing the exception is in a state that does not comply with the set of states that it is designed to be in.Modifier and TypeMethodDescriptionstatic MathRuntimeException
MathRuntimeException.createInternalError()
Create an exception for an internal error.static MathRuntimeException
MathRuntimeException.createInternalError
(Throwable cause) Create an exception for an internal error. -
Uses of MathRuntimeException in org.hipparchus.linear
Modifier and TypeMethodDescriptiondouble
RealVector.cosine
(RealVector v) Computes the cosine of the angle between this vector and the argument.ArrayFieldVector.ebeDivide
(ArrayFieldVector<T> v) Element-by-element division.ArrayFieldVector.ebeDivide
(FieldVector<T> v) Element-by-element division.FieldVector.ebeDivide
(FieldVector<T> v) Element-by-element division.SparseFieldVector.ebeDivide
(FieldVector<T> v) Element-by-element division.boolean
Test for the equality of two real vectors.int
RealVector.hashCode()
.Map a division operation to each entry.Map a division operation to each entry.Map a division operation to each entry.ArrayFieldVector.mapDivideToSelf
(T d) Map a division operation to each entry.FieldVector.mapDivideToSelf
(T d) Map a division operation to each entry.SparseFieldVector.mapDivideToSelf
(T d) Map a division operation to each entry.ArrayFieldVector.mapInv()
Map the 1/x function to each entry.FieldVector.mapInv()
Map the 1/x function to each entry.SparseFieldVector.mapInv()
Map the 1/x function to each entry.ArrayFieldVector.mapInvToSelf()
Map the 1/x function to each entry.FieldVector.mapInvToSelf()
Map the 1/x function to each entry.SparseFieldVector.mapInvToSelf()
Map the 1/x function to each entry.ArrayFieldVector.projection
(ArrayFieldVector<T> v) Find the orthogonal projection of this vector onto another vector.ArrayFieldVector.projection
(FieldVector<T> v) Find the orthogonal projection of this vector onto another vector.FieldVector.projection
(FieldVector<T> v) Find the orthogonal projection of this vector onto another vector.RealVector.projection
(RealVector v) Find the orthogonal projection of this vector onto another vector.SparseFieldVector.projection
(FieldVector<T> v) Find the orthogonal projection of this vector onto another vector.void
RealVector.SparseEntryIterator.remove()
static void
MatrixUtils.solveLowerTriangularSystem
(RealMatrix rm, RealVector b) Solve a system of composed of a Lower Triangular MatrixRealMatrix
.static void
MatrixUtils.solveUpperTriangularSystem
(RealMatrix rm, RealVector b) Solver a system composed of an Upper Triangular MatrixRealMatrix
.void
OpenMapRealVector.unitize()
Converts this vector into a unit vector.void
RealVector.unitize()
Converts this vector into a unit vector.OpenMapRealVector.unitVector()
Creates a unit vector pointing in the direction of this vector.RealVector.unitVector()
Creates a unit vector pointing in the direction of this vector.ModifierConstructorDescriptionEigenDecompositionNonSymmetric
(RealMatrix matrix, double epsilon) Calculates the eigen decomposition of the given real matrix.EigenDecompositionSymmetric
(RealMatrix matrix, double epsilon, boolean decreasing) Calculates the eigen decomposition of the given real matrix. -
Uses of MathRuntimeException in org.hipparchus.util
Modifier and TypeMethodDescriptionstatic int
ArithmeticUtils.addAndCheck
(int x, int y) Add two integers, checking for overflow.static long
ArithmeticUtils.addAndCheck
(long a, long b) Add two long integers, checking for overflow.static int
FastMath.addExact
(int a, int b) Add two numbers, detecting overflows.static long
FastMath.addExact
(long a, long b) Add two numbers, detecting overflows.static long
CombinatoricsUtils.binomialCoefficient
(int n, int k) Returns an exact representation of the Binomial Coefficient, "n choose k
", the number ofk
-element subsets that can be selected from ann
-element set.static double
CombinatoricsUtils.binomialCoefficientDouble
(int n, int k) Returns adouble
representation of the Binomial Coefficient, "n choose k
", the number ofk
-element subsets that can be selected from ann
-element set.static double
CombinatoricsUtils.binomialCoefficientLog
(int n, int k) Returns the naturallog
of the Binomial Coefficient, "n choose k
", the number ofk
-element subsets that can be selected from ann
-element set.static int
FastMath.ceilDiv
(int a, int b) Finds q such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static long
FastMath.ceilDiv
(long a, int b) Finds q such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static long
FastMath.ceilDiv
(long a, long b) Finds q such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static int
FastMath.ceilDivExact
(int a, int b) Finds q such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static long
FastMath.ceilDivExact
(long a, long b) Finds q such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static int
FastMath.ceilMod
(int a, int b) Finds r such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static int
FastMath.ceilMod
(long a, int b) Finds r such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static long
FastMath.ceilMod
(long a, long b) Finds r such thata = q b + r
withb < r <= 0
ifb > 0
and0 <= r < b
ifb < 0
.static byte
MathUtils.copySign
(byte magnitude, byte sign) Returns the first argument with the sign of the second argument.static int
MathUtils.copySign
(int magnitude, int sign) Returns the first argument with the sign of the second argument.static long
MathUtils.copySign
(long magnitude, long sign) Returns the first argument with the sign of the second argument.static short
MathUtils.copySign
(short magnitude, short sign) Returns the first argument with the sign of the second argument.static int
FastMath.decrementExact
(int n) Decrement a number, detecting overflows.static long
FastMath.decrementExact
(long n) Decrement a number, detecting overflows.Compute this ÷ a.static int
FastMath.floorDiv
(int a, int b) Finds q such thata = q b + r
with0 <= r < b
ifb > 0
andb < r <= 0
ifb < 0
.static long
FastMath.floorDiv
(long a, int b) Finds q such thata = q b + r
with0 <= r < b
ifb > 0
andb < r <= 0
ifb < 0
.static long
FastMath.floorDiv
(long a, long b) Finds q such thata = q b + r
with0 <= r < b
ifb > 0
andb < r <= 0
ifb < 0
.static int
FastMath.floorDivExact
(int a, int b) Finds q such thata = q b + r
with0 <= r < b
ifb > 0
andb < r <= 0
ifb < 0
.static long
FastMath.floorDivExact
(long a, long b) Finds q such thata = q b + r
with0 <= r < b
ifb > 0
andb < r <= 0
ifb < 0
.static int
FastMath.floorMod
(int a, int b) Finds r such thata = q b + r
with0 <= r < b
ifb > 0
andb < r <= 0
ifb < 0
.static int
ArithmeticUtils.gcd
(int p, int q) Computes the greatest common divisor of the absolute value of two numbers, using a modified version of the "binary gcd" method.static long
ArithmeticUtils.gcd
(long p, long q) Gets the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations.static int
FastMath.incrementExact
(int n) Increment a number, detecting overflows.static long
FastMath.incrementExact
(long n) Increment a number, detecting overflows.static int
ArithmeticUtils.lcm
(int a, int b) Returns the least common multiple of the absolute value of two numbers, using the formulalcm(a,b) = (a / gcd(a,b)) * b
.static long
ArithmeticUtils.lcm
(long a, long b) Returns the least common multiple of the absolute value of two numbers, using the formulalcm(a,b) = (a / gcd(a,b)) * b
.static int
ArithmeticUtils.mulAndCheck
(int x, int y) Multiply two integers, checking for overflow.static long
ArithmeticUtils.mulAndCheck
(long a, long b) Multiply two long integers, checking for overflow.static double[]
MathArrays.normalizeArray
(double[] values, double normalizedSum) Normalizes an array to make it sum to a specified value.static int
ArithmeticUtils.pow
(int k, int e) Raise an int to an int power.static long
ArithmeticUtils.pow
(long k, int e) Raise a long to an int power.BigReal.reciprocal()
Returns the multiplicative inverse ofthis
element.static float
Precision.round
(float x, int scale, RoundingMode roundingMethod) Rounds the given value to the specified number of decimal places.static long
CombinatoricsUtils.stirlingS2
(int n, int k) Returns the Stirling number of the second kind, "S(n,k)
", the number of ways of partitioning ann
-element set intok
non-empty subsets.static int
ArithmeticUtils.subAndCheck
(int x, int y) Subtract two integers, checking for overflow.static long
ArithmeticUtils.subAndCheck
(long a, long b) Subtract two long integers, checking for overflow.static int
FastMath.toIntExact
(long n) Convert a long to interger, detecting overflows