Class GaussIntegratorFactory
java.lang.Object
org.hipparchus.analysis.integration.gauss.GaussIntegratorFactory
Class that provides different ways to compute the nodes and weights to be
used by the
Gaussian integration rule
.-
Field Summary
Modifier and TypeFieldDescriptionstatic final int
Number of digits for Legendre high precision. -
Constructor Summary
ConstructorDescriptionSimple constructor.GaussIntegratorFactory
(int decimalDigits) Simple constructor. -
Method Summary
Modifier and TypeMethodDescriptionhermite
(int numberOfPoints) Creates a Gauss-Hermite integrator of the given order.laguerre
(int numberOfPoints) Creates a Gauss-Laguerre integrator of the given order.legendre
(int numberOfPoints) Creates a Gauss-Legendre integrator of the given order.legendre
(int numberOfPoints, double lowerBound, double upperBound) Creates a Gauss-Legendre integrator of the given order.legendreHighPrecision
(int numberOfPoints) Creates a Gauss-Legendre integrator of the given order.legendreHighPrecision
(int numberOfPoints, double lowerBound, double upperBound) Creates an integrator of the given order, and whose call to theintegrate
method will perform an integration on the given interval.
-
Field Details
-
DEFAULT_DECIMAL_DIGITS
public static final int DEFAULT_DECIMAL_DIGITSNumber of digits for Legendre high precision.- See Also:
-
-
Constructor Details
-
GaussIntegratorFactory
public GaussIntegratorFactory()Simple constructor. -
GaussIntegratorFactory
public GaussIntegratorFactory(int decimalDigits) Simple constructor.- Parameters:
decimalDigits
- minimum number of decimal digits forlegendreHighPrecision(int)
-
-
Method Details
-
laguerre
Creates a Gauss-Laguerre integrator of the given order. The call to theintegrate
method will perform an integration on the interval \([0, +\infty)\): the computed value is the improper integral of \(e^{-x} f(x)\) where \(f(x)\) is the function passed to theintegrate
method.- Parameters:
numberOfPoints
- Order of the integration rule.- Returns:
- a Gauss-Legendre integrator.
-
legendre
Creates a Gauss-Legendre integrator of the given order. The call to theintegrate
method will perform an integration on the natural interval[-1 , 1]
.- Parameters:
numberOfPoints
- Order of the integration rule.- Returns:
- a Gauss-Legendre integrator.
-
legendre
public GaussIntegrator legendre(int numberOfPoints, double lowerBound, double upperBound) throws MathIllegalArgumentException Creates a Gauss-Legendre integrator of the given order. The call to theintegrate
method will perform an integration on the given interval.- Parameters:
numberOfPoints
- Order of the integration rule.lowerBound
- Lower bound of the integration interval.upperBound
- Upper bound of the integration interval.- Returns:
- a Gauss-Legendre integrator.
- Throws:
MathIllegalArgumentException
- if number of points is not positive
-
legendreHighPrecision
public GaussIntegrator legendreHighPrecision(int numberOfPoints) throws MathIllegalArgumentException Creates a Gauss-Legendre integrator of the given order. The call to theintegrate
method will perform an integration on the natural interval[-1 , 1]
.- Parameters:
numberOfPoints
- Order of the integration rule.- Returns:
- a Gauss-Legendre integrator.
- Throws:
MathIllegalArgumentException
- if number of points is not positive
-
legendreHighPrecision
public GaussIntegrator legendreHighPrecision(int numberOfPoints, double lowerBound, double upperBound) throws MathIllegalArgumentException Creates an integrator of the given order, and whose call to theintegrate
method will perform an integration on the given interval.- Parameters:
numberOfPoints
- Order of the integration rule.lowerBound
- Lower bound of the integration interval.upperBound
- Upper bound of the integration interval.- Returns:
- a Gauss-Legendre integrator.
- Throws:
MathIllegalArgumentException
- if number of points is not positive
-
hermite
Creates a Gauss-Hermite integrator of the given order. The call to theintegrate
method will perform a weighted integration on the interval \([-\infty, +\infty]\): the computed value is the improper integral of \(e^{-x^2}f(x)\) where \(f(x)\) is the function passed to theintegrate
method.- Parameters:
numberOfPoints
- Order of the integration rule.- Returns:
- a Gauss-Hermite integrator.
-