Index
All Classes and Interfaces|All Packages|Serialized Form
A
- addPoint(T) - Method in class org.hipparchus.clustering.Cluster
-
Add a point to this cluster.
C
- CanberraDistance - Class in org.hipparchus.clustering.distance
-
Calculates the Canberra distance between two points.
- CanberraDistance() - Constructor for class org.hipparchus.clustering.distance.CanberraDistance
-
Empty constructor.
- CentroidCluster<T extends Clusterable> - Class in org.hipparchus.clustering
-
A Cluster used by centroid-based clustering algorithms.
- CentroidCluster(Clusterable) - Constructor for class org.hipparchus.clustering.CentroidCluster
-
Build a cluster centered at a specified point.
- centroidOf(Cluster<T>) - Method in class org.hipparchus.clustering.evaluation.ClusterEvaluator
-
Computes the centroid for a cluster.
- ChebyshevDistance - Class in org.hipparchus.clustering.distance
-
Calculates the L∞ (max of abs) distance between two points.
- ChebyshevDistance() - Constructor for class org.hipparchus.clustering.distance.ChebyshevDistance
-
Empty constructor.
- cluster(Collection<T>) - Method in class org.hipparchus.clustering.Clusterer
-
Perform a cluster analysis on the given set of
Clusterable
instances. - cluster(Collection<T>) - Method in class org.hipparchus.clustering.DBSCANClusterer
-
Performs DBSCAN cluster analysis.
- cluster(Collection<T>) - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Performs Fuzzy K-Means cluster analysis.
- cluster(Collection<T>) - Method in class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Runs the K-means++ clustering algorithm.
- cluster(Collection<T>) - Method in class org.hipparchus.clustering.MultiKMeansPlusPlusClusterer
-
Runs the K-means++ clustering algorithm.
- Cluster<T extends Clusterable> - Class in org.hipparchus.clustering
-
Cluster holding a set of
Clusterable
points. - Cluster() - Constructor for class org.hipparchus.clustering.Cluster
-
Build a cluster centered at a specified point.
- Clusterable - Interface in org.hipparchus.clustering
-
Interface for n-dimensional points that can be clustered together.
- Clusterer<T extends Clusterable> - Class in org.hipparchus.clustering
-
Base class for clustering algorithms.
- Clusterer(DistanceMeasure) - Constructor for class org.hipparchus.clustering.Clusterer
-
Build a new clusterer with the given
DistanceMeasure
. - ClusterEvaluator<T extends Clusterable> - Class in org.hipparchus.clustering.evaluation
-
Base class for cluster evaluation methods.
- ClusterEvaluator() - Constructor for class org.hipparchus.clustering.evaluation.ClusterEvaluator
-
Creates a new cluster evaluator with an
EuclideanDistance
as distance measure. - ClusterEvaluator(DistanceMeasure) - Constructor for class org.hipparchus.clustering.evaluation.ClusterEvaluator
-
Creates a new cluster evaluator with the given distance measure.
- compute(double[], double[]) - Method in class org.hipparchus.clustering.distance.CanberraDistance
-
Compute the distance between two n-dimensional vectors.
- compute(double[], double[]) - Method in class org.hipparchus.clustering.distance.ChebyshevDistance
-
Compute the distance between two n-dimensional vectors.
- compute(double[], double[]) - Method in interface org.hipparchus.clustering.distance.DistanceMeasure
-
Compute the distance between two n-dimensional vectors.
- compute(double[], double[]) - Method in class org.hipparchus.clustering.distance.EarthMoversDistance
-
Compute the distance between two n-dimensional vectors.
- compute(double[], double[]) - Method in class org.hipparchus.clustering.distance.EuclideanDistance
-
Compute the distance between two n-dimensional vectors.
- compute(double[], double[]) - Method in class org.hipparchus.clustering.distance.ManhattanDistance
-
Compute the distance between two n-dimensional vectors.
D
- DBSCANClusterer<T extends Clusterable> - Class in org.hipparchus.clustering
-
DBSCAN (density-based spatial clustering of applications with noise) algorithm.
- DBSCANClusterer(double, int) - Constructor for class org.hipparchus.clustering.DBSCANClusterer
-
Creates a new instance of a DBSCANClusterer.
- DBSCANClusterer(double, int, DistanceMeasure) - Constructor for class org.hipparchus.clustering.DBSCANClusterer
-
Creates a new instance of a DBSCANClusterer.
- distance(Clusterable, Clusterable) - Method in class org.hipparchus.clustering.Clusterer
-
Calculates the distance between two
Clusterable
instances with the configuredDistanceMeasure
. - distance(Clusterable, Clusterable) - Method in class org.hipparchus.clustering.evaluation.ClusterEvaluator
-
Calculates the distance between two
Clusterable
instances with the configuredDistanceMeasure
. - DistanceMeasure - Interface in org.hipparchus.clustering.distance
-
Interface for distance measures of n-dimensional vectors.
- DoublePoint - Class in org.hipparchus.clustering
-
A simple implementation of
Clusterable
for points with double coordinates. - DoublePoint(double[]) - Constructor for class org.hipparchus.clustering.DoublePoint
-
Build an instance wrapping an double array.
- DoublePoint(int[]) - Constructor for class org.hipparchus.clustering.DoublePoint
-
Build an instance wrapping an integer array.
E
- EarthMoversDistance - Class in org.hipparchus.clustering.distance
-
Calculates the Earh Mover's distance (also known as Wasserstein metric) between two distributions.
- EarthMoversDistance() - Constructor for class org.hipparchus.clustering.distance.EarthMoversDistance
-
Empty constructor.
- EMPTY_CLUSTER_IN_K_MEANS - Enum constant in enum org.hipparchus.clustering.LocalizedClusteringFormats
-
EMPTY_CLUSTER_IN_K_MEANS.
- equals(Object) - Method in class org.hipparchus.clustering.DoublePoint
- ERROR - Enum constant in enum org.hipparchus.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
-
Generate an error.
- EuclideanDistance - Class in org.hipparchus.clustering.distance
-
Calculates the L2 (Euclidean) distance between two points.
- EuclideanDistance() - Constructor for class org.hipparchus.clustering.distance.EuclideanDistance
-
Empty constructor.
F
- FARTHEST_POINT - Enum constant in enum org.hipparchus.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
-
Create a cluster around the point farthest from its centroid.
- FuzzyKMeansClusterer<T extends Clusterable> - Class in org.hipparchus.clustering
-
Fuzzy K-Means clustering algorithm.
- FuzzyKMeansClusterer(int, double) - Constructor for class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Creates a new instance of a FuzzyKMeansClusterer.
- FuzzyKMeansClusterer(int, double, int, DistanceMeasure) - Constructor for class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Creates a new instance of a FuzzyKMeansClusterer.
- FuzzyKMeansClusterer(int, double, int, DistanceMeasure, double, RandomGenerator) - Constructor for class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Creates a new instance of a FuzzyKMeansClusterer.
G
- getCenter() - Method in class org.hipparchus.clustering.CentroidCluster
-
Get the point chosen to be the center of this cluster.
- getClusterer() - Method in class org.hipparchus.clustering.MultiKMeansPlusPlusClusterer
-
Returns the embedded k-means clusterer used by this instance.
- getClusterEvaluator() - Method in class org.hipparchus.clustering.MultiKMeansPlusPlusClusterer
-
Returns the
ClusterEvaluator
used to determine the "best" clustering. - getClusters() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Returns the list of clusters resulting from the last call to
FuzzyKMeansClusterer.cluster(Collection)
. - getDataPoints() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Returns an unmodifiable list of the data points used in the last call to
FuzzyKMeansClusterer.cluster(Collection)
. - getDistanceMeasure() - Method in class org.hipparchus.clustering.Clusterer
-
Returns the
DistanceMeasure
instance used by this clusterer. - getEmptyClusterStrategy() - Method in class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Returns the
KMeansPlusPlusClusterer.EmptyClusterStrategy
used by this instance. - getEps() - Method in class org.hipparchus.clustering.DBSCANClusterer
-
Returns the maximum radius of the neighborhood to be considered.
- getEpsilon() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Returns the convergence criteria used by this instance.
- getFuzziness() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Returns the fuzziness factor used by this instance.
- getK() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Return the number of clusters this instance will use.
- getK() - Method in class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Return the number of clusters this instance will use.
- getLocalizedString(Locale) - Method in enum org.hipparchus.clustering.LocalizedClusteringFormats
- getMaxIterations() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Returns the maximum number of iterations this instance will use.
- getMaxIterations() - Method in class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Returns the maximum number of iterations this instance will use.
- getMembershipMatrix() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Returns the
nxk
membership matrix, wheren
is the number of data points andk
the number of clusters. - getMinPts() - Method in class org.hipparchus.clustering.DBSCANClusterer
-
Returns the minimum number of points needed for a cluster.
- getNumTrials() - Method in class org.hipparchus.clustering.MultiKMeansPlusPlusClusterer
-
Returns the number of trials this instance will do.
- getObjectiveFunctionValue() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Get the value of the objective function.
- getPoint() - Method in interface org.hipparchus.clustering.Clusterable
-
Gets the n-dimensional point.
- getPoint() - Method in class org.hipparchus.clustering.DoublePoint
-
Gets the n-dimensional point.
- getPoints() - Method in class org.hipparchus.clustering.Cluster
-
Get the points contained in the cluster.
- getRandomGenerator() - Method in class org.hipparchus.clustering.FuzzyKMeansClusterer
-
Returns the random generator this instance will use.
- getRandomGenerator() - Method in class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Returns the random generator this instance will use.
- getSourceString() - Method in enum org.hipparchus.clustering.LocalizedClusteringFormats
H
- hashCode() - Method in class org.hipparchus.clustering.DoublePoint
I
- isBetterScore(double, double) - Method in class org.hipparchus.clustering.evaluation.ClusterEvaluator
-
Returns whether the first evaluation score is considered to be better than the second one by this evaluator.
K
- KMeansPlusPlusClusterer<T extends Clusterable> - Class in org.hipparchus.clustering
-
Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.
- KMeansPlusPlusClusterer(int) - Constructor for class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Build a clusterer.
- KMeansPlusPlusClusterer(int, int) - Constructor for class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Build a clusterer.
- KMeansPlusPlusClusterer(int, int, DistanceMeasure) - Constructor for class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Build a clusterer.
- KMeansPlusPlusClusterer(int, int, DistanceMeasure, RandomGenerator) - Constructor for class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Build a clusterer.
- KMeansPlusPlusClusterer(int, int, DistanceMeasure, RandomGenerator, KMeansPlusPlusClusterer.EmptyClusterStrategy) - Constructor for class org.hipparchus.clustering.KMeansPlusPlusClusterer
-
Build a clusterer.
- KMeansPlusPlusClusterer.EmptyClusterStrategy - Enum in org.hipparchus.clustering
-
Strategies to use for replacing an empty cluster.
L
- LARGEST_POINTS_NUMBER - Enum constant in enum org.hipparchus.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
-
Split the cluster with largest number of points.
- LARGEST_VARIANCE - Enum constant in enum org.hipparchus.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
-
Split the cluster with largest distance variance.
- LocalizedClusteringFormats - Enum in org.hipparchus.clustering
-
Enumeration for localized messages formats used in exceptions messages.
M
- ManhattanDistance - Class in org.hipparchus.clustering.distance
-
Calculates the L1 (sum of abs) distance between two points.
- ManhattanDistance() - Constructor for class org.hipparchus.clustering.distance.ManhattanDistance
-
Empty constructor.
- MultiKMeansPlusPlusClusterer<T extends Clusterable> - Class in org.hipparchus.clustering
-
A wrapper around a k-means++ clustering algorithm which performs multiple trials and returns the best solution.
- MultiKMeansPlusPlusClusterer(KMeansPlusPlusClusterer<T>, int) - Constructor for class org.hipparchus.clustering.MultiKMeansPlusPlusClusterer
-
Build a clusterer.
- MultiKMeansPlusPlusClusterer(KMeansPlusPlusClusterer<T>, int, ClusterEvaluator<T>) - Constructor for class org.hipparchus.clustering.MultiKMeansPlusPlusClusterer
-
Build a clusterer.
O
- org.hipparchus.clustering - package org.hipparchus.clustering
-
Clustering algorithms.
- org.hipparchus.clustering.distance - package org.hipparchus.clustering.distance
-
Common distance measures.
- org.hipparchus.clustering.evaluation - package org.hipparchus.clustering.evaluation
-
Cluster evaluation methods.
S
- score(List<? extends Cluster<T>>) - Method in class org.hipparchus.clustering.evaluation.ClusterEvaluator
-
Computes the evaluation score for the given list of clusters.
- score(List<? extends Cluster<T>>) - Method in class org.hipparchus.clustering.evaluation.SumOfClusterVariances
-
Computes the evaluation score for the given list of clusters.
- SumOfClusterVariances<T extends Clusterable> - Class in org.hipparchus.clustering.evaluation
-
Computes the sum of intra-cluster distance variances according to the formula: \] score = \sum\limits_{i=1}^n \sigma_i^2 \] where n is the number of clusters and \( \sigma_i^2 \) is the variance of intra-cluster distances of cluster \( c_i \).
- SumOfClusterVariances(DistanceMeasure) - Constructor for class org.hipparchus.clustering.evaluation.SumOfClusterVariances
-
Simple constructor.
T
- toString() - Method in class org.hipparchus.clustering.DoublePoint
V
- valueOf(String) - Static method in enum org.hipparchus.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.hipparchus.clustering.LocalizedClusteringFormats
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum org.hipparchus.clustering.KMeansPlusPlusClusterer.EmptyClusterStrategy
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.hipparchus.clustering.LocalizedClusteringFormats
-
Returns an array containing the constants of this enum type, in the order they are declared.
All Classes and Interfaces|All Packages|Serialized Form