Uses of Class
org.hipparchus.optim.nonlinear.scalar.MultivariateOptimizer
Packages that use MultivariateOptimizer
Package
Description
Optimization algorithms for linear constrained problems.
Algorithms for optimizing a scalar function.
This package provides optimization algorithms that require derivatives.
This package provides optimization algorithms that do not require derivatives.
-
Uses of MultivariateOptimizer in org.hipparchus.optim.linear
Subclasses of MultivariateOptimizer in org.hipparchus.optim.linearModifier and TypeClassDescriptionclass
Base class for implementing linear optimizers.class
Solves a linear problem using the "Two-Phase Simplex" method. -
Uses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar
Subclasses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalarModifier and TypeClassDescriptionclass
Base class for implementing optimizers for multivariate scalar differentiable functions.Constructors in org.hipparchus.optim.nonlinear.scalar with parameters of type MultivariateOptimizerModifierConstructorDescriptionLineSearch
(MultivariateOptimizer optimizer, double relativeTolerance, double absoluteTolerance, double initialBracketingRange) TheBrentOptimizer
default stopping criterion uses the tolerances to check the domain (point) values, not the function values.MultiStartMultivariateOptimizer
(MultivariateOptimizer optimizer, int starts, RandomVectorGenerator generator) Create a multi-start optimizer from a single-start optimizer. -
Uses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.gradient
Subclasses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.gradientModifier and TypeClassDescriptionclass
Non-linear conjugate gradient optimizer. -
Uses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.noderiv
Subclasses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.noderivModifier and TypeClassDescriptionclass
Powell's BOBYQA algorithm.class
An implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for non-linear, non-convex, non-smooth, global function minimization.class
Powell's algorithm.class
This class implements simplex-based direct search optimization.