Uses of Interface
org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation
Packages that use LeastSquaresProblem.Evaluation
Package
Description
This package provides algorithms that minimize the residuals
 between observations and model values.
- 
Uses of LeastSquaresProblem.Evaluation in org.hipparchus.optim.nonlinear.vector.leastsquares
Subinterfaces of LeastSquaresProblem.Evaluation in org.hipparchus.optim.nonlinear.vector.leastsquaresModifier and TypeInterfaceDescriptionstatic interfaceThe optimum found by the optimizer.Classes in org.hipparchus.optim.nonlinear.vector.leastsquares that implement LeastSquaresProblem.EvaluationModifier and TypeClassDescriptionclassAn implementation ofLeastSquaresProblem.Evaluationthat is designed for extension.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares that return LeastSquaresProblem.EvaluationModifier and TypeMethodDescriptionLeastSquaresAdapter.evaluate(RealVector point) Evaluate the model at the specified point.LeastSquaresProblem.evaluate(RealVector point) Evaluate the model at the specified point.SequentialGaussNewtonOptimizer.getOldEvaluation()Get the previous evaluation used by the optimizer.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares that return types with arguments of type LeastSquaresProblem.EvaluationModifier and TypeMethodDescriptionLeastSquaresFactory.evaluationChecker(ConvergenceChecker<PointVectorValuePair> checker) View a convergence checker specified for aPointVectorValuePairas one specified for anLeastSquaresProblem.Evaluation.LeastSquaresAdapter.getConvergenceChecker()Gets the convergence checker.Methods in org.hipparchus.optim.nonlinear.vector.leastsquares with parameters of type LeastSquaresProblem.EvaluationModifier and TypeMethodDescriptionbooleanEvaluationRmsChecker.converged(int iteration, LeastSquaresProblem.Evaluation previous, LeastSquaresProblem.Evaluation current) Check if the optimization algorithm has converged.LeastSquaresOptimizer.Optimum.of(LeastSquaresProblem.Evaluation value, int evaluations, int iterations) Create a new optimum from an evaluation and the values of the counters.SequentialGaussNewtonOptimizer.withEvaluation(LeastSquaresProblem.Evaluation previousEvaluation) Configure the previous evaluation used by the optimizer.Method parameters in org.hipparchus.optim.nonlinear.vector.leastsquares with type arguments of type LeastSquaresProblem.EvaluationModifier and TypeMethodDescriptionLeastSquaresBuilder.checker(ConvergenceChecker<LeastSquaresProblem.Evaluation> newChecker) Configure the convergence checker.static LeastSquaresProblemLeastSquaresFactory.create(MultivariateVectorFunction model, MultivariateMatrixFunction jacobian, double[] observed, double[] start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblemfrom the given elements.static LeastSquaresProblemLeastSquaresFactory.create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblemfrom the given elements.static LeastSquaresProblemLeastSquaresFactory.create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations, boolean lazyEvaluation, ParameterValidator paramValidator) Create aLeastSquaresProblemfrom the given elements.static LeastSquaresProblemLeastSquaresFactory.create(MultivariateJacobianFunction model, RealVector observed, RealVector start, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations) Create aLeastSquaresProblemfrom the given elements.Constructors in org.hipparchus.optim.nonlinear.vector.leastsquares with parameters of type LeastSquaresProblem.EvaluationModifierConstructorDescriptionSequentialGaussNewtonOptimizer(MatrixDecomposer decomposer, boolean formNormalEquations, LeastSquaresProblem.Evaluation evaluation) Create a sequential Gauss Newton optimizer that uses the given matrix decomposition algorithm to solve the normal equations.