Uses of Class
org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresBuilder
Packages that use LeastSquaresBuilder
Package
Description
This package provides algorithms that minimize the residuals
 between observations and model values.
- 
Uses of LeastSquaresBuilder in org.hipparchus.optim.nonlinear.vector.leastsquares
Methods in org.hipparchus.optim.nonlinear.vector.leastsquares that return LeastSquaresBuilderModifier and TypeMethodDescriptionLeastSquaresBuilder.checker(ConvergenceChecker<LeastSquaresProblem.Evaluation> newChecker) Configure the convergence checker.LeastSquaresBuilder.checkerPair(ConvergenceChecker<PointVectorValuePair> newChecker) Configure the convergence checker.LeastSquaresBuilder.lazyEvaluation(boolean newValue) Configure whether evaluation will be lazy or not.LeastSquaresBuilder.maxEvaluations(int newMaxEvaluations) Configure the max evaluations.LeastSquaresBuilder.maxIterations(int newMaxIterations) Configure the max iterations.LeastSquaresBuilder.model(MultivariateVectorFunction value, MultivariateMatrixFunction jacobian) Configure the model function.LeastSquaresBuilder.model(MultivariateJacobianFunction newModel) Configure the model function.LeastSquaresBuilder.parameterValidator(ParameterValidator newValidator) Configure the validator of the model parameters.LeastSquaresBuilder.start(double[] newStart) Configure the initial guess.LeastSquaresBuilder.start(RealVector newStart) Configure the initial guess.LeastSquaresBuilder.target(double[] newTarget) Configure the observed data.LeastSquaresBuilder.target(RealVector newTarget) Configure the observed data.LeastSquaresBuilder.weight(RealMatrix newWeight) Configure the weight matrix.