Uses of Class
org.hipparchus.optim.nonlinear.scalar.MultivariateOptimizer
Packages that use MultivariateOptimizer
Package
Description
Optimization algorithms for linear constrained problems.
Algorithms for optimizing a scalar function.
This package provides optimization algorithms that require derivatives.
This package provides optimization algorithms that do not require derivatives.
- 
Uses of MultivariateOptimizer in org.hipparchus.optim.linear
Subclasses of MultivariateOptimizer in org.hipparchus.optim.linearModifier and TypeClassDescriptionclassBase class for implementing linear optimizers.classSolves a linear problem using the "Two-Phase Simplex" method. - 
Uses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar
Subclasses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalarModifier and TypeClassDescriptionclassBase class for implementing optimizers for multivariate scalar differentiable functions.Constructors in org.hipparchus.optim.nonlinear.scalar with parameters of type MultivariateOptimizerModifierConstructorDescriptionLineSearch(MultivariateOptimizer optimizer, double relativeTolerance, double absoluteTolerance, double initialBracketingRange) TheBrentOptimizerdefault stopping criterion uses the tolerances to check the domain (point) values, not the function values.MultiStartMultivariateOptimizer(MultivariateOptimizer optimizer, int starts, RandomVectorGenerator generator) Create a multi-start optimizer from a single-start optimizer. - 
Uses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.gradient
Subclasses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.gradientModifier and TypeClassDescriptionclassNon-linear conjugate gradient optimizer. - 
Uses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.noderiv
Subclasses of MultivariateOptimizer in org.hipparchus.optim.nonlinear.scalar.noderivModifier and TypeClassDescriptionclassPowell's BOBYQA algorithm.classAn implementation of the active Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for non-linear, non-convex, non-smooth, global function minimization.classPowell's algorithm.classThis class implements simplex-based direct search optimization.