Uses of Interface
org.hipparchus.ode.FieldODEIntegrator
Packages that use FieldODEIntegrator
Package
Description
This package provides classes to solve Ordinary Differential Equations problems.
This package provides classes to solve non-stiff Ordinary Differential Equations problems.
-
Uses of FieldODEIntegrator in org.hipparchus.ode
Classes in org.hipparchus.ode that implement FieldODEIntegratorModifier and TypeClassDescriptionclassAbstractFieldIntegrator<T extends CalculusFieldElement<T>>Base class managing common boilerplate for all integrators.classMultistepFieldIntegrator<T extends CalculusFieldElement<T>>This class is the base class for multistep integrators for Ordinary Differential Equations.Methods in org.hipparchus.ode that return FieldODEIntegratorModifier and TypeMethodDescriptionMultistepFieldIntegrator.getStarterIntegrator()Get the starter integrator.Methods in org.hipparchus.ode with parameters of type FieldODEIntegratorModifier and TypeMethodDescriptionvoidMultistepFieldIntegrator.setStarterIntegrator(FieldODEIntegrator<T> starterIntegrator) Set the starter integrator. -
Uses of FieldODEIntegrator in org.hipparchus.ode.nonstiff
Subinterfaces of FieldODEIntegrator in org.hipparchus.ode.nonstiffModifier and TypeInterfaceDescriptioninterfaceFieldExplicitRungeKuttaIntegrator<T extends CalculusFieldElement<T>>This interface implements the part of Runge-Kutta Field integrators for Ordinary Differential Equations common to fixed- and adaptive steps.Classes in org.hipparchus.ode.nonstiff that implement FieldODEIntegratorModifier and TypeClassDescriptionclassAdamsBashforthFieldIntegrator<T extends CalculusFieldElement<T>>This class implements explicit Adams-Bashforth integrators for Ordinary Differential Equations.classAdamsFieldIntegrator<T extends CalculusFieldElement<T>>Base class forAdams-BashforthandAdams-Moultonintegrators.classAdamsMoultonFieldIntegrator<T extends CalculusFieldElement<T>>This class implements implicit Adams-Moulton integrators for Ordinary Differential Equations.classAdaptiveStepsizeFieldIntegrator<T extends CalculusFieldElement<T>>This abstract class holds the common part of all adaptive stepsize integrators for Ordinary Differential Equations.classClassicalRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the classical fourth order Runge-Kutta integrator for Ordinary Differential Equations (it is the most often used Runge-Kutta method).classDormandPrince54FieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 5(4) Dormand-Prince integrator for Ordinary Differential Equations.classDormandPrince853FieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 8(5,3) Dormand-Prince integrator for Ordinary Differential Equations.classEmbeddedRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the common part of all embedded Runge-Kutta integrators for Ordinary Differential Equations.classEulerFieldIntegrator<T extends CalculusFieldElement<T>>This class implements a simple Euler integrator for Ordinary Differential Equations.classFixedStepRungeKuttaFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the common part of all fixed step Runge-Kutta integrators for Ordinary Differential Equations.classGillFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the Gill fourth order Runge-Kutta integrator for Ordinary Differential Equations .classHighamHall54FieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 5(4) Higham and Hall integrator for Ordinary Differential Equations.classLutherFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the Luther sixth order Runge-Kutta integrator for Ordinary Differential Equations.classMidpointFieldIntegrator<T extends CalculusFieldElement<T>>This class implements a second order Runge-Kutta integrator for Ordinary Differential Equations.classThreeEighthesFieldIntegrator<T extends CalculusFieldElement<T>>This class implements the 3/8 fourth order Runge-Kutta integrator for Ordinary Differential Equations.