Uses of Class
org.hipparchus.ode.ExpandableODE
Packages that use ExpandableODE
Package
Description
This package provides classes to solve Ordinary Differential Equations problems.
This package provides classes to solve non-stiff Ordinary Differential Equations problems.
-
Uses of ExpandableODE in org.hipparchus.ode
Methods in org.hipparchus.ode that return ExpandableODEModifier and TypeMethodDescriptionprotected ExpandableODEAbstractIntegrator.getEquations()Get the differential equations to integrate.Methods in org.hipparchus.ode with parameters of type ExpandableODEModifier and TypeMethodDescriptionprotected ODEStateAndDerivativeAbstractIntegrator.initIntegration(ExpandableODE eqn, ODEState s0, double t) Prepare the start of an integration.ODEIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.protected voidMultistepIntegrator.start(ExpandableODE equations, ODEState initialState, double finalTime) Start the integration.Constructors in org.hipparchus.ode with parameters of type ExpandableODEModifierConstructorDescriptionVariationalEquation(ExpandableODE expandable, ODEJacobiansProvider jode) Build variational equation using analytical local partial derivatives.VariationalEquation(ExpandableODE expandable, OrdinaryDifferentialEquation ode, double[] hY, ParametersController controller, ParameterConfiguration... paramsAndSteps) Build variational equation using finite differences for local partial derivatives. -
Uses of ExpandableODE in org.hipparchus.ode.nonstiff
Methods in org.hipparchus.ode.nonstiff with parameters of type ExpandableODEModifier and TypeMethodDescriptionstatic voidExplicitRungeKuttaIntegrator.applyInternalButcherWeights(ExpandableODE equations, double t0, double[] y0, double h, double[][] a, double[] c, double[][] yDotK) Apply internal weights of Butcher array, with corresponding times.AdamsIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.EmbeddedRungeKuttaIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.FixedStepRungeKuttaIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.GraggBulirschStoerIntegrator.integrate(ExpandableODE equations, ODEState initialState, double finalTime) Integrate the differential equations up to the given time.