Uses of Class
org.hipparchus.analysis.differentiation.FieldUnivariateDerivative1
Packages that use FieldUnivariateDerivative1
Package
Description
   This package holds the main interfaces and basic building block classes
   dealing with differentiation.
- 
Uses of FieldUnivariateDerivative1 in org.hipparchus.analysis.differentiation
Methods in org.hipparchus.analysis.differentiation that return FieldUnivariateDerivative1Modifier and TypeMethodDescriptionFieldUnivariateDerivative1.abs()absolute value.FieldUnivariateDerivative1.add(double a) '+' operator.FieldUnivariateDerivative1.add(FieldUnivariateDerivative1<T> a) Compute this + a.FieldUnivariateDerivative1.atan2(FieldUnivariateDerivative1<T> x) Two arguments arc tangent operation.Compute composition of the instance by a function.FieldUnivariateDerivative1.copySign(double sign) Returns the instance with the sign of the argument.FieldUnivariateDerivative1.copySign(FieldUnivariateDerivative1<T> sign) Returns the instance with the sign of the argument.Returns the instance with the sign of the argument.FieldUnivariateDerivative1.divide(double a) '÷' operator.FieldUnivariateDerivative1.divide(FieldUnivariateDerivative1<T> a) Compute this ÷ a.'÷' operator.FieldUnivariateDerivative1.getAddendum()Get the addendum to the real value of the number.FieldUnivariateDerivative1Field.getOne()Get the multiplicative identity of the field.FieldUnivariateDerivative1.getPi()Get the Archimedes constant π.FieldUnivariateDerivative1Field.getZero()Get the additive identity of the field.FieldUnivariateDerivative1.hypot(FieldUnivariateDerivative1<T> y) Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldUnivariateDerivative1.linearCombination(double[] a, FieldUnivariateDerivative1<T>[] b) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3, double a4, FieldUnivariateDerivative1<T> b4) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T>[] a, FieldUnivariateDerivative1<T>[] b) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3, FieldUnivariateDerivative1<T> a4, FieldUnivariateDerivative1<T> b4) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(T[] a, FieldUnivariateDerivative1<T>[] b) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(T a1, FieldUnivariateDerivative1<T> b1, T a2, FieldUnivariateDerivative1<T> b2, T a3, FieldUnivariateDerivative1<T> b3) Compute a linear combination.FieldUnivariateDerivative1.multiply(double a) '×' operator.FieldUnivariateDerivative1.multiply(int n) Compute n × this.FieldUnivariateDerivative1.multiply(FieldUnivariateDerivative1<T> a) Compute this × a.'×' operator.FieldUnivariateDerivative1.negate()Returns the additive inverse ofthiselement.FieldUnivariateDerivative1.newInstance(double value) Create an instance corresponding to a constant real value.FieldUnivariateDerivative1.newInstance(T value) Create an instance corresponding to a constant Field value.FieldUnivariateDerivative1.pow(double p) Power operation.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1<T> FieldUnivariateDerivative1.pow(double a, FieldUnivariateDerivative1<T> x) Compute ax where a is a double and x aFieldUnivariateDerivative1FieldUnivariateDerivative1.pow(int n) Integer power operation.FieldUnivariateDerivative1.remainder(double a) IEEE remainder operator.FieldUnivariateDerivative1.remainder(FieldUnivariateDerivative1<T> a) IEEE remainder operator.IEEE remainder operator.FieldUnivariateDerivative1.rootN(int n) Nth root.FieldUnivariateDerivative1.scalb(int n) Multiply the instance by a power of 2.FieldUnivariateDerivative1.subtract(double a) '-' operator.FieldUnivariateDerivative1.subtract(FieldUnivariateDerivative1<T> a) Compute this - a.FieldUnivariateDerivative1.toDegrees()Convert radians to degrees, with error of less than 0.5 ULPFieldUnivariateDerivative1.toRadians()Convert degrees to radians, with error of less than 0.5 ULPCreate a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.Methods in org.hipparchus.analysis.differentiation that return types with arguments of type FieldUnivariateDerivative1Modifier and TypeMethodDescriptionFieldUnivariateDerivative1Field.getRuntimeClass()Returns the runtime class of the FieldElement.Methods in org.hipparchus.analysis.differentiation with parameters of type FieldUnivariateDerivative1Modifier and TypeMethodDescriptionFieldUnivariateDerivative1.add(FieldUnivariateDerivative1<T> a) Compute this + a.FieldUnivariateDerivative1.atan2(FieldUnivariateDerivative1<T> x) Two arguments arc tangent operation.FieldUnivariateDerivative1.copySign(FieldUnivariateDerivative1<T> sign) Returns the instance with the sign of the argument.FieldUnivariateDerivative1.divide(FieldUnivariateDerivative1<T> a) Compute this ÷ a.FieldUnivariateDerivative1.hypot(FieldUnivariateDerivative1<T> y) Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldUnivariateDerivative1.linearCombination(double[] a, FieldUnivariateDerivative1<T>[] b) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(double a1, FieldUnivariateDerivative1<T> b1, double a2, FieldUnivariateDerivative1<T> b2, double a3, FieldUnivariateDerivative1<T> b3, double a4, FieldUnivariateDerivative1<T> b4) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T>[] a, FieldUnivariateDerivative1<T>[] b) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(FieldUnivariateDerivative1<T> a1, FieldUnivariateDerivative1<T> b1, FieldUnivariateDerivative1<T> a2, FieldUnivariateDerivative1<T> b2, FieldUnivariateDerivative1<T> a3, FieldUnivariateDerivative1<T> b3, FieldUnivariateDerivative1<T> a4, FieldUnivariateDerivative1<T> b4) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(T[] a, FieldUnivariateDerivative1<T>[] b) Compute a linear combination.FieldUnivariateDerivative1.linearCombination(T a1, FieldUnivariateDerivative1<T> b1, T a2, FieldUnivariateDerivative1<T> b2, T a3, FieldUnivariateDerivative1<T> b3) Compute a linear combination.FieldUnivariateDerivative1.multiply(FieldUnivariateDerivative1<T> a) Compute this × a.static <T extends CalculusFieldElement<T>>
FieldUnivariateDerivative1<T> FieldUnivariateDerivative1.pow(double a, FieldUnivariateDerivative1<T> x) Compute ax where a is a double and x aFieldUnivariateDerivative1FieldUnivariateDerivative1.remainder(FieldUnivariateDerivative1<T> a) IEEE remainder operator.FieldUnivariateDerivative1.subtract(FieldUnivariateDerivative1<T> a) Compute this - a.