Uses of Class
org.hipparchus.analysis.differentiation.FieldGradient
Packages that use FieldGradient
Package
Description
This package holds the main interfaces and basic building block classes
dealing with differentiation.
-
Uses of FieldGradient in org.hipparchus.analysis.differentiation
Methods in org.hipparchus.analysis.differentiation that return FieldGradientModifier and TypeMethodDescriptionFieldGradient.abs()absolute value.FieldGradient.add(double a) '+' operator.FieldGradient.add(FieldGradient<T> a) Compute this + a.FieldGradient.atan2(FieldGradient<T> x) Two arguments arc tangent operation.Compute composition of the instance by a function.static <T extends CalculusFieldElement<T>>
FieldGradient<T> FieldGradient.constant(int freeParameters, T value) Build an instance corresponding to a constant value.FieldGradient.copySign(double sign) Returns the instance with the sign of the argument.FieldGradient.copySign(FieldGradient<T> sign) Returns the instance with the sign of the argument.Returns the instance with the sign of the argument.FieldGradient.divide(double a) '÷' operator.FieldGradient.divide(FieldGradient<T> a) Compute this ÷ a.'÷' operator.FieldGradient.getAddendum()Get the addendum to the real value of the number.FieldGradientField.getOne()Get the multiplicative identity of the field.FieldGradient.getPi()Get the Archimedes constant π.FieldGradientField.getZero()Get the additive identity of the field.FieldGradient.hypot(FieldGradient<T> y) Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldGradient.linearCombination(double[] a, FieldGradient<T>[] b) Compute a linear combination.FieldGradient.linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2) Compute a linear combination.FieldGradient.linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3) Compute a linear combination.FieldGradient.linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3, double a4, FieldGradient<T> b4) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T>[] a, FieldGradient<T>[] b) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3, FieldGradient<T> a4, FieldGradient<T> b4) Compute a linear combination.FieldGradient.linearCombination(T[] a, FieldGradient<T>[] b) Compute a linear combination.FieldGradient.linearCombination(T a1, FieldGradient<T> b1, T a2, FieldGradient<T> b2, T a3, FieldGradient<T> b3) Compute a linear combination.FieldGradient.multiply(double a) '×' operator.FieldGradient.multiply(int n) Compute n × this.FieldGradient.multiply(FieldGradient<T> a) Compute this × a.'×' operator.FieldGradient.negate()Returns the additive inverse ofthiselement.FieldGradient.newInstance(double c) Create an instance corresponding to a constant real value.FieldGradient.newInstance(T c) Create an instance corresponding to a constant Field value.FieldGradient.pow(double p) Power operation.static <T extends CalculusFieldElement<T>>
FieldGradient<T> FieldGradient.pow(double a, FieldGradient<T> x) Compute ax where a is a double and x aFieldGradientFieldGradient.pow(int n) Integer power operation.FieldGradient.remainder(double a) IEEE remainder operator.FieldGradient.remainder(FieldGradient<T> a) IEEE remainder operator.IEEE remainder operator.FieldGradient.rootN(int n) Nth root.FieldGradient.scalb(int n) Multiply the instance by a power of 2.FieldGradient.stackVariable()Add an independent variable to the Taylor expansion.FieldGradient.subtract(double a) '-' operator.FieldGradient.subtract(FieldGradient<T> a) Compute this - a.FieldGradient.toDegrees()Convert radians to degrees, with error of less than 0.5 ULPFieldGradient.toRadians()Convert degrees to radians, with error of less than 0.5 ULPstatic <T extends CalculusFieldElement<T>>
FieldGradient<T> FieldGradient.variable(int freeParameters, int index, T value) Build aGradientrepresenting a variable.Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.Methods in org.hipparchus.analysis.differentiation that return types with arguments of type FieldGradientModifier and TypeMethodDescriptionFieldGradientField.getRuntimeClass()Returns the runtime class of the FieldElement.FieldGradient.sinCos()Combined Sine and Cosine operation.FieldGradient.sinhCosh()Combined hyperbolic sine and cosine operation.Methods in org.hipparchus.analysis.differentiation with parameters of type FieldGradientModifier and TypeMethodDescriptionFieldGradient.add(FieldGradient<T> a) Compute this + a.FieldGradient.atan2(FieldGradient<T> x) Two arguments arc tangent operation.FieldGradient.copySign(FieldGradient<T> sign) Returns the instance with the sign of the argument.FieldGradient.divide(FieldGradient<T> a) Compute this ÷ a.FieldGradient.hypot(FieldGradient<T> y) Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.FieldGradient.linearCombination(double[] a, FieldGradient<T>[] b) Compute a linear combination.FieldGradient.linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2) Compute a linear combination.FieldGradient.linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3) Compute a linear combination.FieldGradient.linearCombination(double a1, FieldGradient<T> b1, double a2, FieldGradient<T> b2, double a3, FieldGradient<T> b3, double a4, FieldGradient<T> b4) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T>[] a, FieldGradient<T>[] b) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3) Compute a linear combination.FieldGradient.linearCombination(FieldGradient<T> a1, FieldGradient<T> b1, FieldGradient<T> a2, FieldGradient<T> b2, FieldGradient<T> a3, FieldGradient<T> b3, FieldGradient<T> a4, FieldGradient<T> b4) Compute a linear combination.FieldGradient.linearCombination(T[] a, FieldGradient<T>[] b) Compute a linear combination.FieldGradient.linearCombination(T a1, FieldGradient<T> b1, T a2, FieldGradient<T> b2, T a3, FieldGradient<T> b3) Compute a linear combination.FieldGradient.multiply(FieldGradient<T> a) Compute this × a.static <T extends CalculusFieldElement<T>>
FieldGradient<T> FieldGradient.pow(double a, FieldGradient<T> x) Compute ax where a is a double and x aFieldGradientFieldGradient.remainder(FieldGradient<T> a) IEEE remainder operator.FieldGradient.subtract(FieldGradient<T> a) Compute this - a.