Uses of Class
org.hipparchus.analysis.differentiation.FieldDerivativeStructure
Packages that use FieldDerivativeStructure
Package
Description
This package holds the main interfaces and basic building block classes
dealing with differentiation.
-
Uses of FieldDerivativeStructure in org.hipparchus.analysis.differentiation
Methods in org.hipparchus.analysis.differentiation that return FieldDerivativeStructureModifier and TypeMethodDescriptionFieldDerivativeStructure.abs()absolute value.FieldDerivativeStructure.acos()Arc cosine operation.FieldDerivativeStructure.acosh()Inverse hyperbolic cosine operation.FieldDerivativeStructure.add(double a) '+' operator.FieldDerivativeStructure.add(FieldDerivativeStructure<T> a) Compute this + a.FieldDerivativeStructure.asin()Arc sine operation.FieldDerivativeStructure.asinh()Inverse hyperbolic sine operation.FieldDerivativeStructure.atan()Arc tangent operation.FieldDerivativeStructure.atan2(FieldDerivativeStructure<T> x) Two arguments arc tangent operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T> FieldDerivativeStructure.atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) Two arguments arc tangent operation.FieldDerivativeStructure.atanh()Inverse hyperbolic tangent operation.FDSFactory.build(double... derivatives) Build aFieldDerivativeStructurefrom all its derivatives.final FieldDerivativeStructure<T> Build aFieldDerivativeStructurefrom all its derivatives.FieldDerivativeStructure.compose(double... f) Compute composition of the instance by a univariate function.final FieldDerivativeStructure<T> Compute composition of the instance by a univariate function.FDSFactory.constant(double value) Build aFieldDerivativeStructurerepresenting a constant value.Build aFieldDerivativeStructurerepresenting a constant value.FieldDerivativeStructure.copySign(double sign) Returns the instance with the sign of the argument.FieldDerivativeStructure.copySign(FieldDerivativeStructure<T> sign) Returns the instance with the sign of the argument.Returns the instance with the sign of the argument.FieldDerivativeStructure.cos()Cosine operation.FieldDerivativeStructure.cosh()Hyperbolic cosine operation.FieldDerivativeStructure.differentiate(int varIndex, int differentiationOrder) Differentiate w.r.t. one independent variable.FieldDerivativeStructure.divide(double a) '÷' operator.FieldDerivativeStructure.divide(FieldDerivativeStructure<T> a) Compute this ÷ a.'÷' operator.FieldDerivativeStructure.exp()Exponential.FieldDerivativeStructure.expm1()Exponential minus 1.FieldDerivativeStructure.getAddendum()Get the addendum to the real value of the number.FieldTaylorMap.getFunction(int i) Get a function from the map.FDSFactory.DerivativeField.getOne()Get the multiplicative identity of the field.FDSFactory.DerivativeField.getPi()Get the Archimedes constant π.FieldDerivativeStructure.getPi()Get the Archimedes constant π.FDSFactory.DerivativeField.getZero()Get the additive identity of the field.FieldDerivativeStructure.hypot(FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T> FieldDerivativeStructure.hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.FieldDerivativeStructure.integrate(int varIndex, int integrationOrder) Integrate w.r.t. one independent variable.FieldDerivativeStructure.linearCombination(double[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination(T[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.log()Natural logarithm.FieldDerivativeStructure.log10()Base 10 logarithm.FieldDerivativeStructure.log1p()Shifted natural logarithm.FieldDerivativeStructure.multiply(double a) '×' operator.FieldDerivativeStructure.multiply(FieldDerivativeStructure<T> a) Compute this × a.'×' operator.FieldDerivativeStructure.negate()Returns the additive inverse ofthiselement.FieldDerivativeStructure.newInstance(double value) Create an instance corresponding to a constant real value.FieldDerivativeStructure.newInstance(T value) Create an instance corresponding to a constant Field value.FieldDerivativeStructure.pow(double p) Power operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T> FieldDerivativeStructure.pow(double a, FieldDerivativeStructure<T> x) Compute ax where a is a double and x aFieldDerivativeStructureFieldDerivativeStructure.pow(int n) Integer power operation.FieldDerivativeStructure.pow(FieldDerivativeStructure<T> e) Power operation.FieldDerivativeStructure.rebase(FieldDerivativeStructure<T>... p) Rebase instance with respect to low level parameter functions.FieldDerivativeStructure.reciprocal()Returns the multiplicative inverse ofthiselement.FieldDerivativeStructure.remainder(double a) IEEE remainder operator.FieldDerivativeStructure.remainder(FieldDerivativeStructure<T> a) IEEE remainder operator.IEEE remainder operator.FieldDerivativeStructure.rootN(int n) Nth root.FieldDerivativeStructure.scalb(int n) Multiply the instance by a power of 2.FieldDerivativeStructure.sin()Sine operation.FieldDerivativeStructure.sinh()Hyperbolic sine operation.FieldDerivativeStructure.sqrt()Square root.FieldDerivativeStructure.square()Compute this × this.FieldDerivativeStructure.subtract(double a) '-' operator.FieldDerivativeStructure.subtract(FieldDerivativeStructure<T> a) Compute this - a.FieldDerivativeStructure.tan()Tangent operation.FieldDerivativeStructure.tanh()Hyperbolic tangent operation.FieldDerivativeStructure.toDegrees()Convert radians to degrees, with error of less than 0.5 ULPFieldGradient.toDerivativeStructure()Convert the instance to aFieldDerivativeStructure.abstract FieldDerivativeStructure<S> FieldUnivariateDerivative.toDerivativeStructure()Convert the instance to aDerivativeStructure.FieldUnivariateDerivative1.toDerivativeStructure()Convert the instance to aFieldDerivativeStructure.FieldUnivariateDerivative2.toDerivativeStructure()Convert the instance to aFieldDerivativeStructure.FieldDerivativeStructure.toRadians()Convert degrees to radians, with error of less than 0.5 ULPFDSFactory.variable(int index, double value) Build aFieldDerivativeStructurerepresenting a variable.Build aFieldDerivativeStructurerepresenting a variable.Create a new object with new value (zeroth-order derivative, as passed as input) and same derivatives of order one and above.Methods in org.hipparchus.analysis.differentiation that return types with arguments of type FieldDerivativeStructureModifier and TypeMethodDescriptionFieldDerivativeStructure.getField()Get theFieldto which the instance belongs.FDSFactory.DerivativeField.getRuntimeClass()Returns the runtime class of the FieldElement.FieldDerivativeStructure.sinCos()Combined Sine and Cosine operation.FieldDerivativeStructure.sinhCosh()Combined hyperbolic sine and cosine operation.Methods in org.hipparchus.analysis.differentiation with parameters of type FieldDerivativeStructureModifier and TypeMethodDescriptionFieldDerivativeStructure.add(FieldDerivativeStructure<T> a) Compute this + a.FieldDerivativeStructure.atan2(FieldDerivativeStructure<T> x) Two arguments arc tangent operation.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T> FieldDerivativeStructure.atan2(FieldDerivativeStructure<T> y, FieldDerivativeStructure<T> x) Two arguments arc tangent operation.FieldDerivativeStructure.copySign(FieldDerivativeStructure<T> sign) Returns the instance with the sign of the argument.FieldDerivativeStructure.divide(FieldDerivativeStructure<T> a) Compute this ÷ a.FieldDerivativeStructure.hypot(FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesthisandy- sqrt(this2 +y2) avoiding intermediate overflow or underflow.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T> FieldDerivativeStructure.hypot(FieldDerivativeStructure<T> x, FieldDerivativeStructure<T> y) Returns the hypotenuse of a triangle with sidesxandy- sqrt(x2 +y2) avoiding intermediate overflow or underflow.FieldDerivativeStructure.linearCombination(double[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination(double a1, FieldDerivativeStructure<T> b1, double a2, FieldDerivativeStructure<T> b2, double a3, FieldDerivativeStructure<T> b3, double a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T>[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination(FieldDerivativeStructure<T> a1, FieldDerivativeStructure<T> b1, FieldDerivativeStructure<T> a2, FieldDerivativeStructure<T> b2, FieldDerivativeStructure<T> a3, FieldDerivativeStructure<T> b3, FieldDerivativeStructure<T> a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.linearCombination(T[] a, FieldDerivativeStructure<T>[] b) Compute a linear combination.FieldDerivativeStructure.linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2) Compute a linear combination.FieldDerivativeStructure.linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3) Compute a linear combination.FieldDerivativeStructure.linearCombination(T a1, FieldDerivativeStructure<T> b1, T a2, FieldDerivativeStructure<T> b2, T a3, FieldDerivativeStructure<T> b3, T a4, FieldDerivativeStructure<T> b4) Compute a linear combination.FieldDerivativeStructure.multiply(FieldDerivativeStructure<T> a) Compute this × a.static <T extends CalculusFieldElement<T>>
FieldDerivativeStructure<T> FieldDerivativeStructure.pow(double a, FieldDerivativeStructure<T> x) Compute ax where a is a double and x aFieldDerivativeStructureFieldDerivativeStructure.pow(FieldDerivativeStructure<T> e) Power operation.FieldDerivativeStructure.rebase(FieldDerivativeStructure<T>... p) Rebase instance with respect to low level parameter functions.FieldDerivativeStructure.remainder(FieldDerivativeStructure<T> a) IEEE remainder operator.FieldDerivativeStructure.subtract(FieldDerivativeStructure<T> a) Compute this - a.Constructors in org.hipparchus.analysis.differentiation with parameters of type FieldDerivativeStructureModifierConstructorDescriptionBuild an instance from aFieldDerivativeStructure.FieldTaylorMap(T[] point, FieldDerivativeStructure<T>[] functions) Simple constructor.Build an instance from aFieldDerivativeStructure.Build an instance from aFieldDerivativeStructure.